Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903923

ABSTRACT

Species of the family Apiaceae occupy a major market share but are hitherto dependent on open pollinated cultivars. This results in a lack of production uniformity and reduced quality that has fostered hybrid seed production. The difficulty in flower emasculation led breeders to use biotechnology approaches including somatic hybridization. We discuss the use of protoplast technology for the development of somatic hybrids, cybrids and in-vitro breeding of commercial traits such as CMS (cytoplasmic male sterility), GMS (genetic male sterility) and EGMS (environment-sensitive genic male sterility). The molecular mechanism(s) underlying CMS and its candidate genes are also discussed. Cybridization strategies based on enucleation (Gamma rays, X-rays and UV rays) and metabolically arresting protoplasts with chemicals such as iodoacetamide or iodoacetate are reviewed. Differential fluorescence staining of fused protoplast as routinely used can be replaced by new tagging approaches using non-toxic proteins. Here, we focused on the initial plant materials and tissue sources for protoplast isolation, the various digestion enzyme mixtures tested, and on the understanding of cell wall re-generation, all of which intervene in somatic hybrids regeneration. Although there are no alternatives to somatic hybridization, various approaches also discussed are emerging, viz., robotic platforms, artificial intelligence, in recent breeding programs for trait identification and selection.

2.
Front Plant Sci ; 8: 364, 2017.
Article in English | MEDLINE | ID: mdl-28392794

ABSTRACT

To cope with the problem of salinity- and weed-induced crop losses, a multi-stress tolerant trait is need of the hour but a combinatorial view of such traits is not yet explored. The overexpression of PDH45 (pea DNA helicase 45) and EPSPS (5-enoylpruvyl shikimate-3-phosphate synthase) genes have been reported to impart salinity and herbicide tolerance. Further, the understanding of mechanism and pathways utilized by PDH45 and EPSPS for salinity and herbicide tolerance will help to improve the crops of economical importance. In the present study, we have performed a comparative analysis of salinity and herbicide tolerance to check the biochemical parameters and antioxidant status of tobacco transgenic plants. Collectively, the results showed that PDH45 overexpressing transgenic lines display efficient tolerance to salinity stress, while PDH45+EPSPS transgenics showed tolerance to both the salinity and herbicide as compared to the control [wild type (WT) and vector control (VC)] plants. The activities of the components of enzymatic antioxidant machinery were observed to be higher in the transgenic plants indicating the presence of an efficient antioxidant defense system which helps to cope with the stress-induced oxidative-damages. Photosynthetic parameters also showed significant increase in PDH45 and PDH45+EPSPS overexpressing transgenic plants in comparison to WT, VC and EPSPS transgenic plants under salinity stress. Furthermore, PDH45 and PDH45+EPSPS synergistically modulate the jasmonic acid and salicylic acid mediated signaling pathways for combating salinity stress. The findings of our study suggest that pyramiding of the PDH45 gene with EPSPS gene renders host plants tolerant to salinity and herbicide by enhancing the antioxidant machinery thus photosynthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...