Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Dent ; 18(1): 117-123, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36963426

ABSTRACT

OBJECTIVE: Enhancing wound healing capacity is one of the main principles in oral ulcer management. Efficient oral ulcer management will accelerate clinical symptom amelioration and prevent complications. Adipose mesenchymal stem cell metabolites (AdMSCM), a novel biological product, contains a plethora of bioactive mediators that can induce a series of processes in wound healing. This study will analyze the clinical outcome, angiogenesis, and expression of FGF-2 and VEGFA in the oral ulcer rat model after AdMSCM oral gel application. MATERIALS AND METHODS: Twenty healthy male Wistar rats (Rattus novergicus) were used to create oral ulcer animal models. AdMSCM oral gel treatment was performed three times daily for 3 and 7 days. Clinical outcome was assessed by measuring the major diameter of the ulcer; the angiogenesis was evaluated through histological assessment; the expression of VEGFA and FGF-2 was assessed using the immunohistochemistry method. STATISTICAL ANALYSIS: This study uses parametric comparative analysis using one-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test RESULTS: The application of AdMSCM oral gel in an oral ulcer rat model significantly enhanced the clinical outcome (p < 0.05). In addition, similar results were shown in the histologic assessment of angiogenesis and supported by the significant increase of VEGFA and FGF-2 expression. CONCLUSIONS: AdMSCM oral gel accelerates oral ulcer healing processes, proven by the enhancement of angiogenesis, pro-angiogenic factors expression, and clinical outcomes.

2.
Heliyon ; 9(7): e18039, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37519714

ABSTRACT

Background: SARS-CoV-2 vaccine was proven to be an effective and efficient measure for mitigating pandemic. COVID-19 infection and mortality subsided along with the increaseing COVID-19 vaccination coverage. Vaccine and health resource equity are predominant factors in COVID-19 pandemic management. Vaccine development for Indonesia, aims to ensure a sustainable pandemic control and steady national stability restoration. A decent vaccine must induce immunity against COVID-19 with minimum adverse reaction. Immunogenicity and ability to induce neutralizing antibody evaluation needs to be performed as part of the SARS-CoV-2 inactivated vaccine development from East Java, Indonesia isolate (Vaksin Merah Putih-INAVAC). Objective: This research demonstrated INAVAC performance in inducing the production neutralizing antibody along with its effects on CD4+ and CD8+ cells response in Macaca fascicularis (non-human primate). Methods: Two dosages of 3 µg and 5 µg were tested, compared to sham (NaCl 0.9%) in 10 Macaca fascicularis (2 injection intramuscular with 14 days interval). All animals were monitored daily for clinical signs. Nasopharyngeal samples were analyzed using qRT-PCR while the serum were tested using ELISA and neutralization assay, whereas PBMCs were flowcytrometrically analyzed to measure CD4+ and CD8+ population. Results: It is observed that both vaccine doses could stimulate relatively similar immune response and neutralizing antibody (end GMT post challenge = 905,1), whereas higher CD8+ cells response were reported in the 5 µg group after the 3rd day post-challenge. The dose of vaccine that produce adequate immune cell stimulation with neutralizing antibody induction can be adopted to clinical study, as favorable result of these parameters could predict minimum adverse reaction from inflammation response with balanced immune response. Conclusions: Therefore, it is concluded that Vaksin Merah Putih-INAVAC with 3 µg dose showed a favorable potential to be developed and tested as human vaccine.

3.
Sci Rep ; 12(1): 9127, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650303

ABSTRACT

Canine mesenchymal stem cells (cMSCs) have potential applications for regenerative therapy, including the generation of insulin-producing cells (IPCs) for studying and treating diabetes. In this study, we established a useful protocol for generating IPCs from canine adipose mesenchymal stem cells (cAD-MSCs). Subsequently, in vitro preservation of pluronic F127-coated alginate (ALGPA)-encapsulated cAD-MSC-derived IPCs was performed to verify ready-to-use IPCs. IPCs were induced from cAD-MSCs with the modulated three-stepwise protocol. The first step of definitive endoderm (DE) induction showed that the cooperation of Chir99021 and Activin A created the effective production of Sox17-expressed DE cells. The second step for pancreatic endocrine (PE) progenitor induction from DE indicated that the treatment with taurine, retinoic acid, FGF2, EGF, TGFß inhibitor, dorsomorphin, nicotinamide, and DAPT showed the significant upregulation of the pancreatic endocrine precursor markers Pdx1 and Ngn3. The last step of IPC production, the combination of taurine, nicotinamide, Glp-1, forskolin, PI3K inhibitor, and TGFß inhibitor, yielded efficiently functional IPCs from PE precursors. Afterward, the maintenance of ALGPA-encapsulated cAD-MSC-derived IPCs with VSCBIC-1, a specialized medium, enhanced IPC properties. Conclusion, the modulated three-stepwise protocol generates the functional IPCs. Together, the encapsulation of cAD-MSC-derived IPCs and the cultivation with VSCBIC-1 enrich the maturation of generated IPCs.


Subject(s)
Mesenchymal Stem Cells , Phosphatidylinositol 3-Kinases , Animals , Cell Differentiation , Dogs , Insulin/pharmacology , Niacinamide/pharmacology , Taurine/pharmacology , Transforming Growth Factor beta/pharmacology
4.
Res Pharm Sci ; 17(3): 324-333, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35531131

ABSTRACT

Background and purpose: This study aimed to determine the potency of kebar grass ethanol extract to overcome an increase in cerebellar neuronal cell necrosis, which has an impact on decreasing motor reflex function and spatial memory of mice from lactating mothers exposed to carbofuran. Experimental approach: Forty lactating mice were divided into four groups, 10 each; including control, T1 (carbofuran 0.0125 mg/day), T2 (vitamin C 5 mg + carbofuran 0.0125 mg/day), T3 (kebar grass extract 3.375 mg + carbofuran 0.0125 mg/day). The mice were orally administered with carbofuran, vitamin C, and kebar grass extract on days 0 to 14 postnatal. On the 15th day, brains of the mice were necropsied to measure the levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH), H&E staining; motor reflex tests were performed on 10-day-old mice, and the mice aged 30 days were tested on their swimming and spatial memory. Findings / Results: Carbofuran caused an increase in MDA, GSH, neuronal cell necrosis, surface righting reflex, a decrease in SOD, swimming ability, and spatial memory. Kebar grass extract and vitamin C administration decreased MDA, GSH, neuron necrosis, surface righting reflex, and increased SOD, swimming ability, and spatial memory. Conclusion and implications: Exposing to carbofuran in lactating mice caused brain oxidative stress, impaired motor reflexes, and spatial memory in mice offspring. Kebar grass extract and vitamin C administration prevented brain oxidative stress and inhibited disorders in motor reflexes, and spatial memory in mice offspring. Kebar grass extract administration was more effective than vitamin C.

5.
F1000Res ; 102021.
Article in English | MEDLINE | ID: mdl-34909175

ABSTRACT

Background: An immunoinformatic approach may be useful to investigate the conserved region in the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Indonesia isolates. The aim of this study was to investigate Indonesian SARS-CoV-2 isolates based on B cell epitopes by targeting the conserved regions in the spike glycoprotein to trigger increased multi-variant virus neutralization and memory response for the development of vaccine seed candidates. Methods: SARS-CoV-2 spike glycoprotein gene sequences originating from Indonesia were compared with Wuhan (China), the United Kingdom, South Africa, India, the United States, and Brazil isolates obtained from the NCBI and GISAID databases. The recognition of antigens was carried out directly using B cells through the B cell receptor (BCR). An indirect B cell activation by Cluster of Differentiation (CD)4+ T cells and major histocompatibility complex (MHC)-II was predicted through the binding with human leukocyte antigen (HLA) based on IC 50 value. In addition, vaccine allergenicity and toxicity were investigated. During the molecular complex examination, the 3D peptide structure was investigated and the lowest amount of energy formed when the vaccine candidate peptide bound to BCR and MHC-II was calculated. Results: As a result, the spike glycoprotein sequences of Indonesian SARS-CoV-2 isolates had conserved regions which were very similar to reference countries such as China, the United Kingdom, South Africa, India, the United States, and Brazil. Conclusion: It was predicted that the conserved regions could be identified as the epitope of B and T CD4+ cells that produced the peptides for vaccine candidate with antigenic, non-allergen, and non-toxic properties.


Subject(s)
Epitopes, B-Lymphocyte , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Conserved Sequence , Epitopes, B-Lymphocyte/immunology , Histocompatibility Antigens Class II , Humans , Indonesia , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2
6.
J Vis Exp ; (175)2021 09 25.
Article in English | MEDLINE | ID: mdl-34633368

ABSTRACT

As of 2000, the success of pancreatic islet transplantation using the Edmonton protocol to treat type I diabetes mellitus still faced some obstacles. These include the limited number of cadaveric pancreas donors and the long-term use of immunosuppressants. Mesenchymal stem cells (MSCs) have been considered to be a potential candidate as an alternative source of islet-like cell generation. Our previous reports have successfully illustrated the establishment of induction protocols for differentiating human dental pulp stem cells (hDPSCs) to insulin-producing cells (IPCs). However, the induction efficiency varied greatly. In this paper, we demonstrate the comparison of hDPSCs pancreatic induction efficiency via integrative (microenvironmental and genetic manipulation) and non-integrative (microenvironmental manipulation) induction protocols for delivering hDPSC-derived IPCs (hDPSC-IPCs). The results suggest distinct induction efficiency for both the induction approaches in terms of 3-dimensional colony structure, yield, pancreatic mRNA markers, and functional property upon multi-dosage glucose challenge. These findings will support the future establishment of a clinically applicable IPCs and pancreatic lineage production platform.


Subject(s)
Insulin-Secreting Cells , Mesenchymal Stem Cells , Cell Differentiation , Dental Pulp , Humans , Pancreas
7.
J Biol Eng ; 14: 23, 2020.
Article in English | MEDLINE | ID: mdl-32855655

ABSTRACT

BACKGROUND: Current approach for diabetes treatment remained several adverse events varied from gastrointestinal to life-threatening symptoms. Regenerative therapy regarding Edmonton protocol has been facing serious limitations involving protocol efficiency and safety. This led to the study for alternative insulin-producing cell (IPC) resource and transplantation platform. In this study, evaluation of encapsulated human dental pulp-derived stem cell (hDPSC)-derived IPCs by alginate (ALG) and pluronic F127-coated alginate (ALGPA) was performed. RESULTS: The results showed that ALG and ALGPA preserved hDPSC viability and allowed glucose and insulin diffusion in and out. ALG and ALGPA-encapsulated hDPSC-derived IPCs maintained viability for at least 336 h and sustained pancreatic endoderm marker (NGN3), pancreatic islet markers (NKX6.1, MAF-A, ISL-1, GLUT-2 and INSULIN), and intracellular pro-insulin and insulin expressions for at least 14 days. Functional analysis revealed a glucose-responsive C-peptide secretion of ALG- and ALGPA-encapsulated hDPSC-derived IPCs at 14 days post-encapsulation. CONCLUSION: ALG and ALGPA encapsulations efficiently preserved the viability and functionality of hDPSC-derived IPCs in vitro and could be the potential transplantation platform for further clinical application.

8.
Front Vet Sci ; 7: 4, 2020.
Article in English | MEDLINE | ID: mdl-32118053

ABSTRACT

Diabetes mellitus (DM) remains a global concern in both human and veterinary medicine. Type I DM requires prolonged and consistent exogenous insulin administration to address hyperglycemia, which can increase the risk of diabetes complications such as retinopathy, nephropathy, neuropathy, and heart disorders. Cell-based therapies have been successful in human medicine using the Edmonton protocol. These therapies help maintain the production of endogenous insulin and stabilize blood glucose levels and may possibly be adapted to veterinary clinical practice. The limited number of cadaveric pancreas donors and the long-term use of immunosuppressive agents are the main obstacles for this protocol. Over the past decade, the development of potential therapies for DM has mainly focused on the generation of effective insulin-producing cells (IPCs) from various sources of stem cells that can be transplanted into the body. Another successful application of stem cells in type I DM therapies is transplanting generated IPCs. Encapsulation can be an alternative strategy to protect IPCs from rejection by the body due to their immunoisolation properties. This review summarizes current concepts of IPCs and encapsulation technology for veterinary clinical application and proposes a potential stem-cell-based platform for veterinary diabetic regenerative therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...