Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 22(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672787

ABSTRACT

Altered lipid metabolic pathways including hydrolysis of triglycerides are key players in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Whether adiponutrin (patatin-like phospholipase domain containing protein-3-PNPLA3) and monoacylglycerol lipase (MGL) synergistically contribute to disease progression remains unclear. We generated double knockout (DKO) mice lacking both Mgl and Pnpla3; DKO mice were compared to Mgl-/- after a challenge by high-fat diet (HFD) for 12 weeks to induce steatosis. Serum biochemistry, liver transaminases as well as histology were analyzed. Fatty acid (FA) profiling was assessed in liver and adipose tissue by gas chromatography. Markers of inflammation and lipid metabolism were analyzed. Bone marrow derived macrophages (BMDMs) were isolated and treated with oleic acid. Combined deficiency of Mgl and Pnpla3 resulted in weight gain on a chow diet; when challenged by HFD, DKO mice showed increased hepatic FA synthesis and diminished beta-oxidation compared to Mgl-/-.DKO mice exhibited more pronounced hepatic steatosis with inflammation and recruitment of immune cells to the liver associated with accumulation of saturated FAs. Primary BMDMs isolated from the DKO mice showed increased inflammatory activities, which could be reversed by oleic acid supplementation. Pnpla3 deficiency aggravates the effects of Mgl deletion on steatosis and inflammation in the liver under HFD challenge.


Subject(s)
Membrane Proteins/deficiency , Monoacylglycerol Lipases/deficiency , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/pathology , Weight Gain , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Cells, Cultured , Fatty Acids/metabolism , Humans , Inflammation/pathology , Lipid Metabolism , Liver/pathology , Macrophages/metabolism , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/metabolism , Oleic Acid , Phenotype , U937 Cells
2.
Hepatology ; 71(5): 1750-1765, 2020 05.
Article in English | MEDLINE | ID: mdl-31505038

ABSTRACT

BACKGROUND AND AIMS: Monoacylglycerol lipase (MGL) is the last enzymatic step in triglyceride degradation, hydrolyzing monoglycerides into glycerol and fatty acids (FAs) and converting 2-arachidonoylglycerol into arachidonic acid, thus providing ligands for nuclear receptors as key regulators of hepatic bile acid (BA)/lipid metabolism and inflammation. We aimed to explore the role of MGL in the development of cholestatic liver and bile duct injury in mouse models of sclerosing cholangitis, a disease so far lacking effective pharmacological therapy. APPROACH AND RESULTS: To this aim we analyzed the effects of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) feeding to induce sclerosing cholangitis in wild-type (WT) and knockout (MGL-/- ) mice and tested pharmacological inhibition with JZL184 in the multidrug resistance protein 2 knockout (Mdr2-/- ) mouse model of sclerosing cholangitis. Cholestatic liver injury and fibrosis were assessed by serum biochemistry, liver histology, gene expression, and western blot characterization of BA and FA synthesis/transport. Moreover, intestinal FAs and fecal microbiome were analyzed. Transfection and silencing were performed in Caco2 cells. MGL-/- mice were protected from DDC-induced biliary fibrosis and inflammation with reduced serum liver enzymes and increased FA/BA metabolism and ß-oxidation. Notably, pharmacological (JZL184) inhibition of MGL ameliorated cholestatic injury in DDC-fed WT mice and protected Mdr2-/- mice from spontaneous liver injury, with improved liver enzymes, inflammation, and biliary fibrosis. In vitro experiments confirmed that silencing of MGL decreases prostaglandin E2 accumulation in the intestine and up-regulates peroxisome proliferator-activated receptors alpha and gamma activity, thus reducing inflammation. CONCLUSIONS: Collectively, our study unravels MGL as a metabolic target, demonstrating that MGL inhibition may be considered as potential therapy for sclerosing cholangitis.


Subject(s)
Benzodioxoles/therapeutic use , Cholangitis, Sclerosing/drug therapy , Cholestasis/drug therapy , Enzyme Inhibitors/therapeutic use , Liver Cirrhosis, Biliary/prevention & control , Monoacylglycerol Lipases/antagonists & inhibitors , Piperidines/therapeutic use , ATP Binding Cassette Transporter, Subfamily B/genetics , Animals , Bile Acids and Salts/metabolism , Caco-2 Cells , Cholangitis, Sclerosing/complications , Cholestasis/complications , Disease Models, Animal , Fatty Acids/metabolism , Humans , Liver Cirrhosis, Biliary/etiology , Male , Mice, Inbred C57BL , Mice, Knockout , Pyridines/toxicity , ATP-Binding Cassette Sub-Family B Member 4
3.
J Lipid Res ; 60(7): 1284-1292, 2019 07.
Article in English | MEDLINE | ID: mdl-31048404

ABSTRACT

Monoacylglycerol lipase (MGL) is the rate-limiting enzyme in the degradation of monoacylglycerols. To examine the role of MGL in hepatic steatosis, WT and MGL KO (MGL-/-) mice were challenged with a Western diet (WD) over 12 weeks. Lipid metabolism, inflammation, and fibrosis were assessed by serum biochemistry, histology, and gene-expression profiling of liver and adipose depots. Intestinal fat absorption was measured by gas chromatography. Primary adipocyte and 3T3-L1 cells were analyzed by flow cytometry and Western blot. Human hepatocytes were treated with MGL inhibitor JZL184. The absence of MGL protected mice from hepatic steatosis by repressing key lipogenic enzymes in liver (Srebp1c, Pparγ2, and diacylglycerol O-acyltransferase 1), while promoting FA oxidation. Liver inflammation was diminished in MGL-/- mice fed a WD, as evidenced by diminished epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 (F4/80) staining and C-C motif chemokine ligand 2 gene expression, whereas fibrosis remained unchanged. Absence of MGL promoted fat storage in gonadal white adipose tissue (gWAT) with increased lipogenesis and unchanged lipolysis, diminished inflammation in gWAT, and subcutaneous AT. Intestinal fat malabsorption prevented ectopic lipid accumulation in livers of MGL-/- mice fed a WD. In vitro experiments demonstrated increased adipocyte size/lipid content driven by PPARγ. In conclusion, our data uncover that MGL deletion improves some aspects of nonalcoholic fatty liver disease by promoting lipid storage in gWAT and fat malabsorption.


Subject(s)
Adipose Tissue/metabolism , Liver/enzymology , Liver/metabolism , Monoacylglycerol Lipases/metabolism , 3-Hydroxybutyric Acid/blood , 3T3-L1 Cells , Adiponectin/blood , Animals , Blotting, Western , Cells, Cultured , Fatty Acids/blood , Glycerol/blood , Humans , Immunohistochemistry , Insulin/blood , Intestinal Absorption/genetics , Intestinal Absorption/physiology , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Lipolysis/genetics , Lipolysis/physiology , Mice , Mice, Inbred C57BL , Monoacylglycerol Lipases/deficiency , Monoacylglycerol Lipases/genetics , Obesity/genetics , Obesity/metabolism , Oxidation-Reduction , Peroxisome Proliferator-Activated Receptors/metabolism , Triglycerides/blood
4.
Gut ; 67(9): 1683-1691, 2018 09.
Article in English | MEDLINE | ID: mdl-29636383

ABSTRACT

BACKGROUND AND AIMS: Interruption of the enterohepatic circulation of bile acids (BAs) may protect against BA-mediated cholestatic liver and bile duct injury. BA sequestrants are established to treat cholestatic pruritus, but their impact on the underlying cholestasis is still unclear. We aimed to explore the therapeutic effects and mechanisms of the BA sequestrant colesevelam in a mouse model of sclerosing cholangitis. METHODS: Mdr2-/- mice received colesevelam for 8 weeks. Gene expression profiles of BA homeostasis, inflammation and fibrosis were explored in liver, intestine and colon. Hepatic and faecal BA profiles and gut microbiome were analysed. Glucagon-like peptide 1 (GLP-1) levels in portal blood were measured by ELISA. Furthermore, Mdr2-/- mice as well as wild-type 3,5-diethoxy-carbonyl-1,4-dihydrocollidine-fed mice were treated with GLP-1-receptor agonist exendin-4 for 2 weeks prior to analysis. RESULTS: Colesevelam reduced serum liver enzymes, BAs and expression of proinflammatory and profibrogenic markers. Faecal BA profiling revealed increased levels of secondary BAs after resin treatment, while hepatic and biliary BA composition showed a shift towards more hydrophilic BAs. Colonic GLP-1 secretion, portal venous GLP-1 levels and intestinal messenger RNA expression of gut hormone Proglucagon were increased, while ileal Fgf15 expression was abolished by colesevelam. Exendin-4 treatment increased bile duct mass without promoting a reactive cholangiocyte phenotype in mouse models of sclerosing cholangitis. Microbiota analysis showed an increase of the phylum δ-Proteobacteria after colesevelam treatment and a shift within the phyla Firmicutes from Clostridiales to Lactobacillus. CONCLUSION: Colesevelam increases faecal BA excretion and enhances BA conversion towards secondary BAs, thereby stimulating secretion of GLP-1 from enteroendocrine L-cells and attenuates liver and bile duct injury in Mdr2-/- mice.


Subject(s)
Anticholesteremic Agents/therapeutic use , Bile Ducts/drug effects , Cholangitis, Sclerosing/drug therapy , Colesevelam Hydrochloride/therapeutic use , Liver/drug effects , Animals , Cholestasis/drug therapy , Disease Models, Animal , Glucagon-Like Peptide 1/drug effects , Homeostasis/drug effects , Mice , Mice, Knockout , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...