Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(4): 5380-5396, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439266

ABSTRACT

We present the development of a transportable laser frequency stabilization system with application to both optical clocks and a next-generation gravity mission (NGGM) in space. This effort leverages a 5-cm long cubic cavity with crystalline coatings operating at room temperature and with a center wavelength of 1064 nm. The cavity is integrated in a custom vacuum chamber with dedicated low-noise locking electronics. Our vacuum-mounted cavity and control system are well suited for space applications, exhibiting state-of-the-art noise performance while being resilient to radiation exposure, vibration, shock, and temperature variations. Furthermore, we demonstrate a robust means of automatically (re)locking the laser to the cavity when resonance is lost. We show that the mounted cavity is capable of reaching technology readiness level (TRL) 6, paving the way for high-performance ultrastable laser systems and eventually optical atomic clocks amenable to future satellite platforms.

2.
Opt Express ; 30(11): 18090-18097, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221616

ABSTRACT

A digital optical phase-locked loop (OPLL) has been implemented to develop a distributed Brillouin sensing system in optical fibers. In our experiment, two commercial semiconductor lasers are phase-locked to each other with a highly flexible offset frequency using field programmable gate array (FPGA)-based electronics. Then, the difference frequency between the two lasers is highly stabilized and scanned by a desired step frequency in the vicinity of the Brillouin frequency of standard single-mode optical fibers. Consequently, the distribution of Brillouin frequency shift over a 50 km-long sensing fiber has been successfully measured by a very simple and low-cost Brillouin optical time-domain reflectometry (BOTDR) sensing system without any penalty in the sensing performance. The measurement repeatability at 50 km position of sensing fiber with a 5 m spatial resolution was measured be 4.5 MHz under fast measurement conditions: the number of trace averaging of 2000 and the frequency scan step of 12.8 MHz, showing the figure-of-merit of 3.0.

3.
Opt Express ; 25(3): 2215-2220, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519069

ABSTRACT

The repetition rate stabilization of an optical frequency comb based on diode-pumped solid-state laser technology is demonstrated using an intra-cavity electro-optic modulator. The large feedback bandwidth of such modulators allows disciplining the comb repetition rate on a cavity-stabilized continuous-wave laser with a locking bandwidth up to 700 kHz. This surpasses what can be achieved with any other type of actuator reported so far. An in-loop integrated phase noise of 133 mrad has been measured and the PM-to-AM coupling of the electro-optic modulator has been investigated as well.

4.
Opt Express ; 23(25): 32441-51, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26699033

ABSTRACT

We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system.

5.
Opt Express ; 23(8): 9890-900, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25969030

ABSTRACT

We report ground-level gamma and proton radiation tests of a passively mode-locked diode-pumped solid-state laser (DPSSL) with Yb:KYW gain medium. A total gamma dose of 170 krad(H(2)O) applied in 5 days generates minor changes in performances while maintaining solitonic regime. Pre-irradiation specifications are fully recovered over a day to a few weeks timescale. A proton fluence of 9.76·10(10) cm(-2) applied in few minutes shows no alteration of the laser performances. Furthermore, complete stabilization of the laser shows excellent noise properties. From our results, we claim that the investigated femtosecond DPSSL technology can be considered rad-hard and would be suitable for generating frequency combs compatible with long duration space missions.

6.
Opt Express ; 19(17): 16491-7, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21935013

ABSTRACT

We present carrier envelope offset (CEO) frequency detection of a diode-pumped Yb:KGW (ytterbium-doped potassium gadolinium tungstate) laser with a repetition rate of 1 GHz. The SESAM-soliton-modelocked laser delivers 2.2-W average power in 290-fs pulses. This corresponds to a peak power of 6.7 kW and the optical-to-optical efficiency is 38%. With a passive pulse compression the duration is reduced to 100 fs at an average power of 1.1 W. Coherent supercontinuum (SC) generation in a highly nonlinear photonic crystal fiber (PCF) is achieved without additional amplification. Furthermore we have demonstrated that pulse compression towards lower soliton orders of approximately 10 was required for coherent SC generation and CEO detection. Additional numerical simulations further confirm these experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...