Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2403057, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38889238

ABSTRACT

Lead (Pb) halide perovskite solar cells (PSCs) exhibit impressive power conversion efficiencies close to those of their silicon counterparts. However, they suffer from moisture instability and Pb safety concerns. Previous studies have endeavoured to address these issues independently, yielding minimal advancements. Here, a general nanoencapsulation platform using natural polyphenols is reported for Pb-halide PSCs that simultaneously addresses both challenges. The polyphenol-based encapsulant is solution-processable, inexpensive (≈1.6 USD m-2), and requires only 5 min for the entire process, highlighting its potential scalability. The encapsulated devices with a power conversion efficiency of 20.7% retained up to 80% of their peak performance for 2000 h and up to 70% for 7000 h. Under simulated rainfall conditions, the encapsulant rich in catechol groups captures the Pb ions released from the degraded perovskites via coordination, keeping the Pb levels within the safe drinking water threshold of 15 ppb.

2.
Adv Mater ; 36(9): e2309212, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38041711

ABSTRACT

The essential virtues of aqueous zinc battery chemistry stem from the energy-dense zinc metal anode and mild aqueous electrolytes. Yet, their incompatibility - as exposed by zinc's corrosion and associated dendrite problem - poses a challenge to achieving improved cycle life under practically relevant parameters. While electrolyte additives are a scalable strategy, additives that can function at low volume concentrations remain elusive. Here, through screening alkanol and alkanediol chemistries, 1,2-butanediol and pentanediol are unveiled as highly potent additives, which operate at a practical 1 volume% concentration owing to their ability to furnish dynamic solid-electrolyte interphase through pronounced interfacial filming. This unique mechanistic action renders effective corrosion and dendrite mitigation, resulting in up to five to twenty-fold zinc cyclability enhancement with a high Coulombic efficiency (up to 99.9%) and improved full-cell performance under demanding conditions, including at elevated temperatures. A machine learning-based analysis is presented to rationalize the additive performance relative to critical physicochemical descriptors, which can pave the way for a rational approach to efficient additive discoveries.

3.
J Phys Chem B ; 123(31): 6810-6822, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31343883

ABSTRACT

In this work, we examined the performance of contemporary quantum mechanical implicit solvent models (SMD, SM8, SM12, and ADF-COSMO-RS) and empirical fragment-based methods for predicting octanol-water partition coefficients (log Pow). Two test sets were chosen: the first is composed of 34 organic molecules from a recent study by Mobley J. Chem. Theory Comput , 2016 , 12 , 4015 - 4024 , and the second set is based on a collection of 55 fluorinated alkanols and carbohydrates from Linclau Angew. Chem., Int. Ed. , 2016 , 55 , 674 - 678 . Our analysis indicates that the errors in the solvation free energies of implicit models are reasonably systematic in both solvents such that there is substantial cancellation of errors in the calculation of transfer free energies. Overall, implicit solvent models performed very well across the two test sets with mean absolute errors (MAEs) of about 0.6 log unit and are superior to explicit solvent simulations (GAFF and GAFF-DC). Interestingly, the best performers were empirical fragment-based methods, including ALOGP and miLOGP with significantly lower MAEs (0.2 to 0.4 log unit). The ALOGP method was further tested against the recent SAMPL6 log Pow challenge consisting of 11 drug-like molecules where it obtained an MAE of 0.32 log unit compared to the best-performing COSMOtherm model (0.31 log unit).

4.
Phys Chem Chem Phys ; 18(31): 21833-42, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27436622

ABSTRACT

The present work aims to study solvent effects on the polarizability (α), static first hyperpolarizability (ß) and one- and two-photon absorption (OPA and TPA) properties of a new class of molecules viz. triply twisted Möbius annulenes, recently studied by us in vacuum phase [Kundi et al., Phys. Chem. Chem. Phys., 2015, 17, 6827]. We have employed linear and quadratic response theories within the framework of time-dependent density functional theory with the CAM-B3LYP functional and a cc-pVDZ basis set to calculate different parameters. The microscopic details of the said properties have been studied using a two-state model (2SM) approach, which performs very well in the case of ß and TPA of the first excited state of all the systems. However for the second excited state, the 2SM results are far from those of response theory. In fact, in comparison to response theory, 2SM predicts an opposite trend for the TP activity of some of the model systems, indicating a significant contribution from the other higher excited states. The anomaly between the 2SM approach and response theory has been resolved by incorporating three states in the calculations.

5.
J Phys Chem A ; 120(17): 2757-70, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27054876

ABSTRACT

The quantum chemical study of one-, two-, and three-photon absorption (1PA, 2PA, and 3PA) properties for a set of compact fluorene derivatives (FD) with combination of different donor and acceptor moieties on both sides of fluorene ring system is presented. The main goal of the study is to pack large two-photon (2P) and three-photon (3P) activity into smallest possible chromophore. Linear, quadratic, and cubic response time-dependent density functional theory was used to calculate 1PA, 2PA, and 3PA properties, respectively. We used CAMB3LYP/cc-pVDZ level of theory for all the property calculations. The 2P and 3P transition probabilities were recalculated using two-state model approach and found to be in good agreement with the response theory results for first excited state. To include the contributions from higher states, the three-state model was also employed to recalculate the 2P transition probabilities and found to be in excellent agreement with response theory. The 2P/3P tensor elements were also analyzed to find reasons behind large 2P/3P activities. All the orbitals involved in transition processes were studied in detail by both molecular orbital pictures (qualitatively) and overlap diagnostic Λ-values (quantitatively). The study reveals that the novel fluorene derivatives FD-12 and FD-13 have shown large 2PA cross-section values of 1100 G.M. and 1030 G.M.; and 3PA transition probabilities of 6.10 × 10(10) a.u. and 4.85 × 10(10) a.u., respectively, for transition S0 → S1. The largest 3PA transition probability of 4.04 × 10(11) a.u. was found with FD-12 for S0 → S2 excitation. The linear relationship between Λ-values and 2PA cross-section values was also studied.

6.
Phys Chem Chem Phys ; 17(18): 12299-309, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25894609

ABSTRACT

A detailed theoretical study of linear and non-linear optical susceptibilities (NLOS), one- and two-photon absorption (OPA and TPA) properties for a series of push-pull trans-stilbene (TSB) derivatives with introduction of different electron donor (D) and acceptor (A) groups on either side of the TSB ring system is presented. The objective of the work is to design new TSB derivatives with large TPA cross-section values and to explore their linear and non-linear optical susceptibilities, OPA and TPA properties. We have used linear and quadratic response theory methods and CAM-B3LYP functional in conjunction with the 6-31+G* basis set for all property calculations. We have explained the results of the first hyperpolarizability and TP transition probability using two-state model (2SM) calculations, the results of which are in excellent agreement with the response theory methods. The TP tensor elements have been analysed to explain the large TP activity of molecules. Orbitals involved in the transition processes have been studied both qualitatively (molecular orbital pictures) and quantitatively (Λ-values) in order to explain the nature of charge transfer in different TSB derivatives. The study reveals that the novel derivatives TSBD-10, TSBD-11, TSBD-12 and TSBD-13 have large non-linear optical susceptibilities and TPA cross-section values, the largest being found for TSBD-13 (5560 G.M.).

7.
Phys Chem Chem Phys ; 17(10): 6827-33, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25669484

ABSTRACT

In the present work, we have studied the gas phase one- and two-photon absorption (OPA and TPA) properties of the first two excited states of the triply twisted Möbius annulene molecule (G. R. Schaller, et al., Nat. Chem. 2014, 6, 608) and five model systems substituted with different donor and acceptor groups. The main purpose of this study is to explore the OPA and TPA properties of this newly synthesized molecule and the unique π-conjugation provided by it. We have used the linear and quadratic response theory methods with the CAMB3LYP functional and the cc-pVDZ basis set for calculating the required parameters. Our results indicate that in the absence of any directive force (i.e. the donor-acceptor groups) the unsubstituted molecule is completely TP inactive. However, as soon as we insert the donor-acceptor group the system becomes TP active which can further be enhanced (up to 3640 GM in our case) by changing the donor-acceptor groups. We have explained the results by performing a two-state model calculation and by analyzing the TP tensor elements and the orbitals involved in the transition processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...