Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 5(6): 962-73, 2013.
Article in English | MEDLINE | ID: mdl-23995617

ABSTRACT

The manufacturing of bispecific antibodies can be challenging for a variety of reasons. For example, protein expression problems, stability issues, or the use of non-standard approaches for manufacturing can result in poor yield or poor facility fit. In this paper, we demonstrate the use of standard antibody platforms for large-scale manufacturing of bispecific IgG1 by controlled Fab-arm exchange. Two parental antibodies that each contain a single matched point mutation in the CH3 region were separately expressed in Chinese hamster ovary cells and manufactured at 1000 L scale using a platform fed-batch and purification process that was designed for standard antibody production. The bispecific antibody was generated by mixing the two parental molecules under controlled reducing conditions, resulting in efficient Fab-arm exchange of>95% at kg scale. The reductant was removed via diafiltration, resulting in spontaneous reoxidation of interchain disulfide bonds. Aside from the bispecific nature of the molecule, extensive characterization demonstrated that the IgG1 structural integrity was maintained, including function and stability. These results demonstrate the suitability of this bispecific IgG1 format for commercial-scale manufacturing using standard antibody manufacturing techniques.


Subject(s)
Antibodies, Bispecific/biosynthesis , Protein Engineering , Animals , Antibodies, Bispecific/genetics , Bioreactors , CHO Cells , Cricetinae , Cricetulus , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Point Mutation , Protein Stability , Spectrometry, Mass, Electrospray Ionization
2.
Proc Natl Acad Sci U S A ; 110(13): 5145-50, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23479652

ABSTRACT

The promise of bispecific antibodies (bsAbs) to yield more effective therapeutics is well recognized; however, the generation of bsAbs in a practical and cost-effective manner has been a formidable challenge. Here we present a technology for the efficient generation of bsAbs with normal IgG structures that is amenable to both antibody drug discovery and development. The process involves separate expression of two parental antibodies, each containing single matched point mutations in the CH3 domains. The parental antibodies are mixed and subjected to controlled reducing conditions in vitro that separate the antibodies into HL half-molecules and allow reassembly and reoxidation to form highly pure bsAbs. The technology is compatible with standard large-scale antibody manufacturing and ensures bsAbs with Fc-mediated effector functions and in vivo stability typical of IgG1 antibodies. Proof-of-concept studies with HER2×CD3 (T-cell recruitment) and HER2×HER2 (dual epitope targeting) bsAbs demonstrate superior in vivo activity compared with parental antibody pairs.


Subject(s)
Antibodies, Bispecific/biosynthesis , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin G/biosynthesis , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/genetics , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/chemistry , Immunoglobulin G/genetics , Jurkat Cells , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
3.
J Inorg Biochem ; 105(2): 250-5, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21194625

ABSTRACT

With the purpose to develop macromolecular magnetic resonance imaging contrast agents, we herein report three different synthetic approaches to the covalent attachment of bifunctional chelating agents to human serum albumin followed by coordination to contrast enhancing gadolinium(III). Applied methods cover active ester-mediated conjugation, linkage through glutaryl spacer, as well as the connection by the employment of glutaraldehyde. The content of gadolinium(III) was evaluated by inductively-coupled-plasma mass-spectrometry (ICP-MS) measurements and indicated reproducible amounts of conjugated contrast enhancing material. Small angle X-ray scattering (SAXS) experiments provided the size and altered shape of the gadolinium loaded proteins in comparison to unmodified albumin. Finally, the magnetic resonance properties of the protein conjugates were evaluated. The results indicated suitability of the gadolinium(III) loaded protein conjugates for use as macromolecular contrast agents in magnetic resonance imaging (MRI).


Subject(s)
Chelating Agents/chemistry , Contrast Media/chemical synthesis , Coordination Complexes/chemical synthesis , Gadolinium , Serum Albumin/chemistry , Contrast Media/chemistry , Coordination Complexes/chemistry , Humans , Magnetic Resonance Imaging , Molecular Conformation , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...