Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(18): 8020-8032, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38651992

ABSTRACT

Mn-doped Bi3O4Br has been synthesized using a solvothermal route. The undoped Bi3O4Br and Mn-Bi3O4Br materials possess orthorhombic unit cells with two distinct Bi sites forming a layered atomic arrangement. The shift in the (020) plane in the powder X-ray diffraction (PXRD) pattern confirms Mn-doping in the Bi3O4Br lattice. Elemental mapping indicated 7% Mn doping in the Bi3O4Br lattice structure. A core-level X-ray photoelectron study (XPS) indicates the presence of BiIII and MnII valence-states in Mn-Bi3O4Br. Doping with a cation (MnII) containing a different charge and ionic radius resulted in vacancy/defects in Mn-Bi3O4Br which further altered its electronic structure by reducing the indirect band gap, beneficial for electron conduction and electrocatalysis. The irreversible MnII to MnIII transformation at a potential of 1.48 V (vs. RHE) precedes the electrochemical oxygen evolution reaction (OER). The Mn-doped electrocatalyst achieved 10 mA cm-2 current density at 337 mV overpotential, while the pristine Bi3O4Br required 385 mV overpotential to reach the same activity. The pronounced OER activity of the Mn-Bi3O4Br sample over the pristine Bi3O4Br highlights the necessity of MnII doping. The superior activity of the Mn-Bi3O4Br catalyst over that of Bi3O4Br is due to a low Tafel slope, better double-layer capacitance (Cdl), and small charge-transfer resistance (Rct). The chronoamperometry (CA) study depicts long-term stability for 12 h at 20 mA cm-2. An electrolyzer fabricated as Pt(-)/(+)Mn-Bi3O4Br can deliver 10 mA cm-2 at a cell potential of 2.05 V. The post-CA-OER analyses of the anode confirmed the leaching of [Br-] followed by in situ formation of Mn-doped Bi2O3 as the electrocatalytically active species. Herein, an ultra-low Mn-doping into Bi3O4Br leads to an improvement in the electrocatalytic performance of the inactive Bi3O4Br material.

2.
JACS Au ; 4(2): 642-656, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425911

ABSTRACT

The semiconducting behavior of mixed-valence copper sulfides arises from the pronounced covalency of Cu-S bonds and the exchange coupling between CuI and CuII centers. Although electrocatalytic study with digenite Cu9S5 and covellite CuS has been performed earlier, detailed redox chemistry and its interpretation through lattice structure analysis have never been realized. Herein, nanostructured Cu9S5 and CuS are prepared and used as electrode materials to study their electrochemistry. Powder X-ray diffraction (PXRD) and microscopic studies have found the exposed surface of Cu9S5 to be d(0015) and d(002) for CuS. Tetrahedral (Td) CuII, distorted octahedral (Oh) CuII, and trigonal planar (Tp) CuI sites form the d(0015) surface of Cu9S5, while the (002) surface of CuS consists of only Td CuII. The distribution of CuI and CuII sites in the lattice, predicted by PXRD, can further be validated through core-level Cu 2p X-ray photoelectron spectroscopy (XPS). The difference in the electrochemical response of Cu9S5 and CuS arises predominantly from the different copper sites present in the exposed surfaces and their redox states. In situ Raman spectra recorded during cyclic voltammetric study indicates that Cu9S5 is more electrochemically labile compared to CuS and transforms rapidly to CuO/Cu2O. Contact-angle and BET analyses imply that a high-surface-energy and macroporous Cu9S5 surface favors the electrolyte diffusion, which leads to a pronounced redox response. Post-chronoamperometric (CA) characterizations identify the potential-dependent structural transformation of Cu9S5 and CuS to CuO/Cu2O/Cu(OH)2 electroactive species. The performance of the in situ formed copper-oxides towards electrocatalytic water-splitting is superior compared to the pristine copper sulfides. In this study, the redox chemistry of the Cu9S5/CuS has been correlated to the atomic arrangements and coordination geometry of the surface exposed sites. The structure-activity correlation provides in-depth knowledge of how to interpret the electrochemistry of metal sulfides and their in situ potential-driven surface/bulk transformation pathway to evolve the active phase.

3.
Inorg Chem ; 63(1): 494-507, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38145464

ABSTRACT

Organic polymers have attracted considerable interest in designing a multifunctional electrocatalyst. However, the inferior electro-conductivity of such metal-free polymers is often regarded as a shortcoming. Herein, a nitrogen- and phosphorus-rich polymer with phosphamide functionality (PAP) in the repeating unit has been synthesized from diaminopyridine (DAP) and phenylphosphonic dichloride (PPDC) precursors. The presence of phosphamide oxygen and pyridine nitrogen in the repeating unit of PAP leads to the coordination of the CuII ion and the incorporation of 3.29 wt % in the polymer matrix (Cu30@PAP) when copper salt is used to impregnate the polymer. Combined with a spectroscopic, microscopic, and DFT study, the coordination and geometry of copper in the PAP matrix has been established to be a distorted square planar CuII in a N2O2 ligand environment where phosphamide oxygen and pyridine nitrogen of the PAP coordinate to the metal center. The copper incorporation in the PAP modulates its electrocatalytic activity. On the glassy carbon electrode, PAP shows inferior activity toward the hydrogen evolution reaction (HER) in 0.5 M H2SO4 while 3 wt % copper incorporation (Cu30@PAP) significantly improves the HER performance with an overpotential of 114 mV at 10 mA cm-2. The notable electrochemical activity with Cu30@PAP occurs due to the impregnation of Cu(II) in PAP, improved electro-kinetics, and better charge transfer resistance (Rct). When changing the electrolyte from H2SO4 to CO2-saturated bicarbonate solution at nearly neutral pH, PAP shows HER as the dominant pathway along with the partial reduction of CO2 to formate. Moreover, the use of Cu30@PAP as an electrolcatalyst could not alter the predominant HER path, and only 20% Faradaic efficiency for the CO2 reduced products has been achieved. Post-chronoamperometric characterization of the recovered catalyst suggests an unaltered valence state of the copper ion and the intact chemical structure of PAP. DFT studies unraveled that the copper sites of Cu30@PAP promote water adsorption while phosphamide-NH of the PAP can weakly hold the CO2 adduct via a hydrogen bonding interaction. A detailed calculation has pointed out that the tetra-coordinated copper centers present in the PAP frame are the reactive sites and that the formation of the [CuI-H] intermediate is the rate-limiting step for both HER and its competitive side reaction, i.e., CO2 reduction to formate or CO formation. The high proton concentration in the electrolyte of pH < 7 leads to HER as the predominant pathway. This combined experimental and theoretical study has highlighted the crucial role of copper sites in electrocatalysis, emphasizing the plausible reason for electrocatalytic selectivity.

4.
Chem Commun (Camb) ; 59(33): 4943-4946, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37013672

ABSTRACT

Despite several reports on metal ferrites for water splitting studies, SnFe2O4 is a rarely explored spinel oxide. Herein, solvothermally prepared ca. 5 nm SnFe2O4 nanoparticles deposited on nickel foam (NF) behaves as a bi-functional electrocatalyst. In alkaline pH, the SnFe2O4/NF electrode exhibits oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) at moderate overpotentials and shows a fair chronoamperometric stability. Detailed study indicates that iron sites of the spinel are preferably active for the OER while the SnII sites not only enhance the electrical conductivity of the material but also favor the HER.

5.
ACS Appl Mater Interfaces ; 15(6): 8010-8021, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36739542

ABSTRACT

Efficient hydrogen production, biomass up-conversion, and CO2-to-fuel generation are the key challenges of the present decade. Electrocatalysis in aqueous electrolytes by choosing suitable transition-metal-based electrode materials remains the green approach for the trio of sustainable developments. Given that, finding electrode materials with multifunctional capability would be beneficial. Herein, the nanocrystalline α-NiS, synthesized solvothermally, has been chosen as an electrode material. As the first step to construct an electrolyzer, α-NiS deposited on conducting nickel foam (NF) has been used as an anode, and under the anodic potential, the α-NiS particles have lost sulfides to the electrolyte and transform to amorphous electro-derived NiO(OH) (NiO(OH)ED), confirmed by different spectroscopic and microscopic studies. In situ transformation of α-NiS to amorphous NiO(OH)ED results in an enhancement of the electrochemical surface area and not only becomes active toward oxygen evolution reaction (OER) at a moderate overpotential of 264 mV (at 20 mA cm-2) but also can convert a series of biomass-derived organic compounds, namely, 2-hydroxymethylfurfural (HMF), 2-furfural (FF), ethylene glycol (EG), and glycerol (Gly), to industrially relevant feedstocks with a high (∼96%) Faradaic efficiency. During these organic oxidations, NiO(OH)ED/NF participate in the multiple-electron oxidation process (up to 8e-) including C-C bond cleavages of EG and Gly. During the cathodic performance of the α-NiS/NF, the structural integrity has been retained and the unaltered α-NiS/NF electrode remains more effective cathode for alkaline hydrogen evolution reaction (HER) and CO2 reduction (CO2R) compared to its in situ-derived NiO(OH)ED/NF. α-NiS/NF can reduce the CO2 predominantly to CO even at a higher potential like -0.8 V (vs RHE). The fabricated cell with α-NiS and its electro-oxidized NiO(OH)ED counterpart, α-NiS/NF(-)/(+)NiO(OH)ED/NF, is able to show an artificial photosynthetic scheme in which the NiO(OH)ED/NF anode oxidizes water to O2 and the α-NiS cathode reduces CO2 majorly to CO in a moderate cell potential. In this study, α-NiS has been utilized as a single electrode material to perform multiple sustainable transformations.

6.
Dalton Trans ; 51(39): 15094-15110, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36125011

ABSTRACT

Due to poor conductivity, the electrocatalytic performance of independently prepared iron oxy-hydroxide (FeO(OH)) is inferior whereas FeO(OH) derived in situ from the iron based electro(pre)catalyst shows superior performance in the oxygen evolution reaction (OER). Use of mixed phase FeO(OH) and/or incorporation of CoII/NiII metal into the FeO(OH) structure has also been demonstrated as a convenient approach to achieve high OER activity. Nevertheless, preparation of phase-pure, albeit active FeO(OH) material with fair electrochemical performance remains a perdurable challenge. Moreover, the role of the crystalline phase and its surface structure in controlling the OER activity is still unclear. Herein, a simple synthetic protocol has been developed to prepare a series of phase-pure α-FeO(OH) (goethite) and γ-FeO(OH) (lepidocrocite) materials. By changing the reaction conditions such as iron salt and reaction temperature, the crystallinity as well as the phase of the oxy-hydroxide material have been varied. The isolated α- and γ-FeO(OH) materials with different crystallinity were thereafter deposited on nickel foam (NF) for alkaline OER study. The recorded overpotential value at 10 mA cm-2 has been found to be dependent on the phase and crystallinity of the FeO(OH) materials. The partially crystalline γ-FeO(OH) isolated at room temperature (γ-FeO(OH)@RT) turns out to be the most active with a lowest overpotential of 260 mV at 10 mA cm-2 and a long term stability of 12 h. The γ-FeO(OH)@RT/NF anode can furnish high current densities like 50-100 mA cm-2 which makes this anode distinct from the previously reported FeO(OH) materials. Detailed electrochemical study suggested that the fair activity of the γ-FeO(OH)@RT arises due to a facile electrokinetics as evident from the small Tafel slope and charge transfer resistance (Rct value from the Nyquist plot). Owing to the superior activity of the γ-FeO(OH)@RT/NF, the anode can further be incorporated into an overall water splitting electrolyzer that can operate at a cell potential of 1.68 V. The microscopic characterization provides concrete evidence in support of the polycrystallinity of the γ-FeO(OH)@RT. The superior activity of the γ-FeO(OH)@RT perhaps can be correlated to its polycrystalline nature with more defect edges, the presence of a large exposed surface and random atomic arrangements. The highest degree of multiple surface active terminals (-O, -OH and -Fe) available in this polycrystalline γ-FeO(OH) perhaps makes the catalyst more active compared to the crystalline FeO(OH) analogue with a limited number of surface terminals. From a comparative study with a series of FeO(OH) materials, this work highlights a direct relationship between the surface functionality and the electrochemical activity of the FeO(OH) material.

7.
Inorg Chem ; 61(12): 4995-5009, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35293211

ABSTRACT

In the present era, electrochemical water splitting has been showcased as a reliable solution for alternative and sustainable energy development. The development of a cheap, albeit active, catalyst to split water at a substantial overpotential with long durability is a perdurable challenge. Moreover, understanding the nature of surface-active species under electrochemical conditions remains fundamentally important. A facile hydrothermal approach is herein adapted to prepare covellite (hexagonal) phase CuS nanoplates. In the covellite CuS lattice, copper is present in a mixed-valent state, supported by two different binding energy values (932.10 eV for CuI and 933.65 eV for CuII) found in X-ray photoelectron spectroscopy analysis, and adopted two different geometries, that is, trigonal planar preferably for CuI and tetrahedral preferably for CuII. The as-synthesized covellite CuS behaves as an efficient electro(pre)catalyst for alkaline water oxidation while deposited on a glassy carbon and nickel foam (NF) electrodes. Under cyclic voltammetry cycles, covellite CuS electrochemically and irreversibly oxidized to CuO, indicated by a redox feature at 1.2 V (vs the reversible hydrogen electrode) and an ex situ Raman study. Electrochemically activated covellite CuS to the CuO phase (termed as CuSEA) behaves as a pure copper-based catalyst showing an overpotential (η) of only 349 (±5) mV at a current density of 20 mA cm-2, and the TOF value obtained at η349 (at 349 mV) is 1.1 × 10-3 s-1. A low Rct of 5.90 Ω and a moderate Tafel slope of 82 mV dec-1 confirm the fair activity of the CuSEA catalyst compared to the CuS precatalyst, reference CuO, and other reported copper catalysts. Notably, the CuSEA/NF anode can deliver a constant current of ca. 15 mA cm-2 over a period of 10 h and even a high current density of 100 mA cm-2 for 1 h. Post-oxygen evolution reaction (OER)-chronoamperometric characterization of the anode via several spectroscopic and microscopic tools firmly establishes the formation of crystalline CuO as the active material along with some amorphous Cu(OH)2 via bulk reconstruction of the covellite CuS under electrochemical conditions. Given the promising OER activity, the CuSEA/NF anode can be fabricated as a water electrolyzer, Pt(-)//(+)CuSEA/NF, that delivers a j of 10 mA cm-2 at a cell potential of 1.58 V. The same electrolyzer can further be used for electrochemical transformation of organic feedstocks like ethanol, furfural, and 5-hydroxymethylfurfural to their respective acids. The present study showcases that a highly active CuO/Cu(OH)2 heterostructure can be constructed in situ on NF from the covellite CuS nanoplate, which is not only a superior pure copper-based electrocatalyst active for OER and overall water splitting but also for the electro-oxidation of industrial feedstocks.

8.
ACS Appl Mater Interfaces ; 14(5): 6570-6581, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35084167

ABSTRACT

Development of economical and high-performance electrocatalysts for the oxygen evolution reaction (OER) is of tremendous interest for future applications as sustainable energy materials. Here, a unique member of efficient OER electrocatalysts has been developed based upon structurally versatile dumbbell-shaped ternary transition-metal (Cu, Ni, Co) phosphates with a three-dimensional (3D) (Cu2(OH)(PO4)/Ni3(PO4)2·8H2O/Co3(PO4)2·8H2O) (CNCP) structure. This structure is prepared using a simple aqueous stepwise addition of metal ion source approach. Various structural investigations demonstrate highly crystalline nature of the composite structure. Apart from the unique structural aspect, it is important that the CNCP composite structure has proved to be an excellent electrocatalyst for OER performance in comparison with its binary or constituent phosphate under alkaline and neutral conditions. Notably, the CNCP electrocatalyst displays a much lower overpotential of 224 mV at a current density of 10 mA cm-2 and a lower Tafel slope of 53 mV dec-1 with high stability in alkaline medium. In addition, X-ray photoelectron spectroscopy analysis suggested that the activity and long-term durability for the OER of the ternary 3D metal phosphate are due to the presence of electrochemically dynamic constituents such as Ni and Co and their resulting synergistic effects, which was further supported by theoretical studies. Theoretical calculations also reveal that the incredible OER execution was ascribed to the electron redistribution set off in the presence of Ni and Cu and the most favorable interaction between the *OOH intermediate and the active sites of CNCP. This work may attract the attention of researchers to construct efficient 3D ternary metal phosphate catalysts for various applications in the field of electrochemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...