Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Phys Chem Au ; 4(3): 268-280, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38800728

ABSTRACT

Phase-separated protein accumulation through the formation of several aggregate species is linked to the pathology of several human disorders and diseases. Our current investigation envisaged detailed Raman signature and structural intricacy of bovine insulin in its various forms of aggregates produced in situ at an elevated temperature (60 °C). The amide I band in the Raman spectrum of the protein in its native-like conformation appeared at 1655 cm-1 and indicated the presence of a high content of α-helical structure as prepared freshly in acidic pH. The disorder content (turn and coils) also was predominately present in both the monomeric and oligomeric states and was confirmed by the presence shoulder amide I maker band at ∼1680 cm-1. However, the band shifted to ∼1671 cm-1 upon the transformation of the protein solution into fibrillar aggregates as produced for a longer time of incubation. The protein, however, maintained most of its helical conformation in the oligomeric phase; the low-frequency backbone α-helical conformation signal at ∼935 cm-1 was similar to that of freshly prepared aqueous protein solution enriched in helical conformation. The peak intensity was significantly weak in the fibrillar aggregates, and it appeared as a good Raman signature to follow the phase separation and the aggregation behavior of insulin and similar other proteins. Tyrosine phenoxy moieties in the protein may maintained its H-bond donor-acceptor integrity throughout the course of fibril formation; however, it entered in more hydrophobic environment in its journey of fibril formation. In addition, it was noticed that oligomeric bovine insulin maintained the orientation/conformation of the disulfide bonds. However, in the fibrillar state, the disulfide linkages became more strained and preferred to maintain a single conformation state.

2.
Int J Biol Macromol ; 253(Pt 1): 126683, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37666396

ABSTRACT

Parkinson's disease (PD) is linked to α-synuclein (aS) aggregation and deposition of amyloid in the substantia nigra region of the brain tissues. In the current investigation we produced two distinct classes of aS oligomer of differed protein conformation, stability and compared their toxic nature to cultured neuronal cells. Lyophilized oligomer (LO) was produced in storage of aS at-20 °C for 7 days and it was enriched with loosely hold molten globule like structure with residues having preferences for α-helical conformational space. The size of the oligomer was 4-5.5 nm under AFM. This kind of oligomer exhibited potential toxicity towards neuronal cell lines and did not transform into compact ß-sheet rich amyloid fiber even after incubation at 37 °C for several days. Formation of another type of oligomer was often observed in the lag phase of aS fibrillation that often occurred at an elevated temperature (37 °C). This kind of heat induced oligomer (IO) was more hydrophobic and relatively less toxic to neuronal cells compared to lyophilized oligomer (LO). Importantly, initiation of hydrophobic zipping of aS caused the transformation of IO into thermodynamically stable ß-sheet rich amyloid fibril. On the other hand, the presence of molten globule like conformation in LO, rendered greater toxicity to cultured neuronal cells.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Protein Conformation , Neurons/metabolism , Protein Conformation, beta-Strand , Amyloid/chemistry , Amyloidogenic Proteins
3.
Langmuir ; 39(21): 7231-7248, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37094111

ABSTRACT

Misfolding and self-assembly of several intrinsically disordered proteins into ordered ß-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-ß-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.


Subject(s)
Metal Nanoparticles , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Gold/chemistry , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Amyloid/chemistry
4.
J Chem Inf Model ; 63(7): 2122-2132, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36943246

ABSTRACT

Molecular mechanics play an important role in enzyme action and understanding the dynamics of loop motion is key for designing inhibitors of an enzyme, particularly targeting the allosteric sites. For the successful creation of new protease inhibitors targeting the dengue serine protease, our current investigation detailed the intricate structural dynamics of NS2B/NS3 dengue protease. This enzyme is one of the most essential enzymes in the life cycle of the dengue virus, which is responsible for the activation/processing of viral polyprotein, thus making it a potential target for drug discovery. We showed that the internal dynamics of two regions, fingers 1 and 2 (R24-G39 and L149-A164, respectively) adjacent to the active site triad of this protease, control the enzyme action. Each of these regions is composed of two antiparallel ß-strands connected by ß-turn/hairpin loops. The correlated bending and rocking motions in the two ß-turns on either side of the active site were found to modulate the activity of the enzyme to a large extent. With increasing concentration of cosolvent dimethyl sulfoxide, correlated motions in the finger 2 region get diminished and bending of finger 1 increases, which are also reflected in the loss of enzyme activity. Decreasing temperature and mutations in neighboring nonsubstrate binding residues show similar effects on loop motion and enzyme kinetics. Therefore, in vitro noninvasive perturbation of these motions by the solvent exchange as well as cold stress in combination with in silico molecular dynamics simulations established the importance of the two ß-turns in the functioning of dengue virus serotype 2 NS2B/NS3 serine protease.


Subject(s)
Dengue Virus , Dengue , Humans , Solvents , Dengue Virus/metabolism , Viral Nonstructural Proteins/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Dengue/drug therapy , Serine Proteases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...