Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
Add more filters










Publication year range
2.
J Med Chem ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812379

ABSTRACT

A series of novel Ru(II)/Ir(III)/Re(I)-based organometallic complexes [Ru2L1, Ru2L2, Ir2L1, Ir2L2, Re2L1, and Re2L2] have been synthesized to assess their potency and selectivity against multiple cancer cells A549, HCT-116, and HCT-116 colon CSCs. The cytotoxic screening of the synthesized complexes has revealed that complex Ru2L1 and Ir2L2 are two proficient complexes among all, but Ru2L1 is the most potent complex. A significant binding constant value was observed for DNA and BSA in all complexes. Significant lipophilic properties allow them to penetrate cancer cell membranes, and substantial quantum yield (ϕf) values support bioimaging potential. Again, these complexes are particular for mitochondrial localization and produce a profuse amount of ROS to damage the mitochondrial DNA and then G1 phase cell-cycle arrest. Protein expression analysis unveiled that pro-apoptotic Bax protein overexpressed in Ru2L1-treated cells, whereas antiapoptotic Bcl-2 protein was expressed twofold in Ir2L2-treated cells, which correlated with autophagy reticence.

3.
Small ; : e2402403, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682732

ABSTRACT

Viologen-based covalent organic networks represent a burgeoning class of materials distinguished by their captivating properties. Here, supramolecular chemistry is harnessed to fabricate polyrotaxanated ionic covalent organic polymers (iCOP) through a Schiff-base condensation reaction under solvothermal conditions. The reaction between 1,1'-bis(4-aminophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (DPV-NH2) and 1,3,5-triformylphloroglucinol (TPG) in various solvents yields an iCOP-1 and iCOP-2. Likewise, employing cucurbit[7]uril (CB[7]) in the reaction yielded polyrotaxanated iCOPs, denoted as iCOP-CB[7]-1 and iCOP-CB[7]-2. All four iCOPs exhibit exceptional stability under the acidic and basic conditions. iCOP-CB[7]-2 displays outstanding electrocatalytic Oxygen Evolution Reaction (OER) performance, demanding an overpotential of 296 and 332 mV at 10 and 20 mA cm-2, respectively. Moreover, the CB[7] integrated iCOP-2 exhibits a long-term stable nature for 30 h in 1 m KOH environment. Further, intrinsic activity studies like TOF show a 4.2-fold increase in generation of oxygen (O2) molecules than the bare iCOP-2. Also, it is found that iCOP-CB[7]-2 exhibits a high specific (19.48 mA cm-2) and mass activity (76.74 mA mg-1) at 1.59 V versus RHE. Operando-EIS study evident that iCOP-CB[7]-2 commences OER at a relatively low applied potential of 1.5 V versus RHE. These findings pave the way for a novel approach to synthesizing various mechanically interlocked molecules through straightforward solvothermal conditions.

4.
Inorg Chem ; 63(11): 4883-4897, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494956

ABSTRACT

The reaction of Co(OAc)2·6H2O with 2,2'-[{(1E,1'E)-pyridine-2,6-diyl-bis(methaneylylidene)bis(azaneylylidene)}diphenol](LH2) a multisite coordination ligand and Et3N in a 1:2:3 stoichiometric ratio forms a tetranuclear complex Co4(L)2(µ-η1:η1-OAc)2(η2-OAc)2]· 1.5 CH3OH· 1.5 CHCl3 (1). Based on X-ray diffraction investigations, complex 1 comprises a distorted Co4O4 cubane core consisting of two completely deprotonated ligands [L]2- and four acetate ligands. Two distinct types of CoII centers exist in the complex, where the Co(2) center has a distorted octahedral geometry; alternatively, Co(1) has a distorted pentagonal-bipyramidal geometry. Analysis of magnetic data in 1 shows predominant antiferromagnetic coupling (J = -2.1 cm-1), while the magnetic anisotropy is the easy-plane type (D1 = 8.8, D2 = 0.76 cm-1). Furthermore, complex 1 demonstrates an electrochemical oxygen evolution reaction (OER) with an overpotential of 325 mV and Tafel slope of 85 mV dec-1, required to attain a current density of 10 mA cm-2 and moderate stability under alkaline conditions (pH = 14). Electrochemical impedance spectroscopy studies reveal that compound 1 has a charge transfer resistance (Rct) of 2.927 Ω, which is comparatively lower than standard Co3O4 (5.242 Ω), indicating rapid charge transfer kinetics between electrode and electrolyte solution that enhances higher catalytic activity toward OER kinetics.

5.
Adv Mater ; 36(18): e2310938, 2024 May.
Article in English | MEDLINE | ID: mdl-38245860

ABSTRACT

The development of metal-free bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is significant but rarely demonstrated. Porous organic polymers (POPs) with well-defined electroactive functionalities show superior performance in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Precise control of the active sites' local environment requires careful modulation of linkers through the judicious selection of building units. Here, a systematic strategy is introduced for modulating functionality to design and synthesize a series of thianthrene-based bifunctional sp2 C═C bonded POPs with hollow spherical morphologies exhibiting superior electrocatalytic activity. This precise structural tuning allowed to gain insight into the effects of heteroatom incorporation, hydrophilicity, and variations in linker length on electrocatalytic activity. The most efficient bifunctional electrocatalyst THT-PyDAN achieves a current density of 10 mA cm─2 at an overpotential (η10) of ≈65 mV (in 0.5 m H2SO4) and ≈283 mV (in 1 m KOH) for HER and OER, respectively. THT-PyDAN exhibits superior activity to all previously reported metal-free bifunctional electrocatalysts in the literature. Furthermore, these investigations demonstrate that THT-PyDAN maintains its performance even after 36 h of chronoamperometry and 1000 CV cycling. Post-catalytic characterization using FT-IR, XPS, and microscopic imaging techniques underscores the long-term durability of THT-PyDAN.

6.
ACS Appl Mater Interfaces ; 16(5): 5965-5976, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38263906

ABSTRACT

The development of low-cost, efficient catalysts for electrocatalytic water splitting to generate green hydrogen is a hot topic among researchers. Herein, we have developed a highly efficient heterostructure of CoCr-LDH on NiO on nickel foam (NF) for the first time. The preparation strategy follows the simple annealing of a cleaned NF without using any Ni salt precursor, followed by the growth of CoCr-LDH nanosheets over the surface-oxidized NF. The CoCr-LDH/NiO/NF catalyst shows excellent electrocatalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in a 1 M KOH solution. For OER, only 253 mV and for HER, only 185 mV overpotentials are required to attain a 50 mA cm-2 current density. Also, the long-term stability of both the OER and HER for 60 h proves its robustness. The turnover frequency value for the OER increased 1.85 times after the heterostructure formation compared to bare CoCr-LDH. The calculated Faradaic efficiency values of 97.4 and 94.75% for the OER and HER revealed the high intrinsic activity of the heterostructure. Moreover, the heterostructure only needs 1.57 V of cell voltage when acting as both the anode and the cathode to achieve a 10 mA cm-2 current density. The long-term stability of 60 h for the total water-splitting process proves its excellent performance. Several systematic pre- and post-experiment characterizations prove its durable nature. These excellent OER and HER activities and stabilities are attributed to the surface-modified electronic structure and thin nanosheet-like surface morphology of the heterostructure. The thin, wide, and modified surface of the catalyst facilitates the diffusion of ions (reactants) and gas molecules (products) at the electrode/electrolyte interface. Furthermore, electron transfer from n-type CoCr-LDH to p-type NiO results in enhanced electronic conductivity. This study demonstates the effective design of a self-supported heterostructure with minimal synthetic steps to generate a bifunctional electrocatalyst for water splitting, contributing to the greater cause of green hydrogen economy.

7.
Adv Mater ; 36(12): e2209919, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36635878

ABSTRACT

The development of synthetic routes for the formation of robust porous organic polymers (POPs) with well-defined nanoscale morphology is fundamentally significant for their practical applications. The thermodynamic characteristics that arise from reversible covalent bonding impart intrinsic chemical instability in the polymers, thereby impeding their overall potential. Herein, a unique strategy is reported to overcome the stability issue by designing robust imidazole-linked POPs via tandem reversible/irreversible bond formation. Incorporating inherent rigidity into the secondary building units leads to robust microporous polymeric nanostructures with hollow-spherical morphologies. An in-depth analysis by extensive solid-state NMR (1D and 2D) study on 1H, 13C, and 14N nuclei elucidates the bonding and reveals the high purity of the newly designed imidazole-based POPs. The nitrogen-rich polymeric nanostructures are further used as metal-free electrocatalysts for water splitting. In particular, the rigid POPs show excellent catalytic activity toward the oxygen evolution reaction (OER) with long-term durability. Among them, the most efficient OER electrocatalyst (TAT-TFBE) requires 314 mV of overpotential to drive 10 mA cm-2 current density, demonstrating its superiority over state-of-the-art catalysts (RuO2 and IrO2).

8.
Inorg Chem ; 62(51): 21265-21276, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38073275

ABSTRACT

Electrocatalytic water splitting to an anodic oxygen evolution reaction (OER) and a cathodic hydrogen evolution reaction (HER) is believed to be the most important application for sustainable hydrogen generation. Being a four-electron, four-proton transfer process, the OER plays the main obstacle for the same. Therefore, designing an effective electrocatalyst to minimize the activation energy barrier for the OER is a research topic of prime importance. The metal-organic framework (MOF) with a highly porous network is considered an appropriate candidate for the OER in alkaline conditions. Apart from several MOFs, the bimetallic one has an advantageous electrocatalytic performance due to the synergistic electronic interaction between two metal ions. However, most bimetallic MOFs have an obstacle to electrocatalytic application due to their low conductive nature, and therefore, they possess a barrier for charge transfer kinetics at the interface. Surface functionalization via various nanoparticles (NPs) is believed to be the most effective strategy for nullifying the conductive issue. In this work, we have designed a CoNi-based bimetallic MOF that was surface-functionalized by Au NPs (Au@CoNi-Bpy-BTC) for the OER under alkaline conditions. Au@CoNi-Bpy-BTC required an overpotential of just 330 mV, which is 56 mV lower as compared to the pristine MOF. Impedance analysis confirms an improved conductivity and charge transfer at the interface, where Au@CoNi-Bpy-BTC possesses a lower Rct value than CoNi-Bpy-BTC materials. Moreover, the Au-decorated MOF shows an 8.5 times increase in the TOF value compared to the pristine MOF. Therefore, this noble strategy toward the surface functionalization of MOFs via noble metal NPs is believed to be the most effective strategy for developing effective electrocatalysts for electrocatalytic application in energy-related fields. Overall, this report displays an exceptional correlation between the decorated NPs over the MOF surface, which can regulate the OER activity, as confirmed by experimental analysis.

9.
Dalton Trans ; 52(45): 16680-16687, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37960973

ABSTRACT

Herein, the synthesis and characterization of bicyclic (alkyl)(amino)carbene (BICAAC)-stabilized phosphinidenes (1-4) are reported. Compounds 1-3 were obtained by reacting trihalophosphine [PX3, X = Cl (1), Br (2), I (3)] with BICAAC in THF. A BICAAC-stabilized bis-phosphinidene (4) was obtained from the reduction of compound 2. All four compounds were characterized by X-ray crystallography and heteronuclear NMR spectroscopy. Theoretical calculations indicated the predominant C(carbene)P double bond characteristic in compounds 1-4.

10.
Angew Chem Int Ed Engl ; 62(48): e202311523, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37800603

ABSTRACT

Nitrite (NO2 - ) and nitric oxide (NO) interconversion is crucial for maintaining optimum NO flux in mammalian physiology. Herein we demonstrate that [L2 CuII (nitrite)]+ moieties (in 2 a and 2 b; where, L = Me2 PzPy and Me2 PzQu) with distorted octahedral geometry undergo facile reduction to provide tetrahedral [L2 CuI ]+ (in 3 a and 3 b) and NO in the presence of biologically relevant reductants, such as 4-methoxy-2,6-di-tert-butylphenol (4-MeO-2,6-DTBP, a tyrosine model) and N-benzyl-1,4-dihydronicotinamide (BNAH, a NAD(P)H model). Interestingly, the reaction of excess NO gas with [L2 CuII (MeCN)2 ]2+ (in 1 a) provides a putative {CuNO}10 species, which is effective in mediating the nitrosation of various nucleophiles, such as thiol and amine. Generation of the transient {CuNO}10 species in wet acetonitrile leads to NO2 - as assessed by Griess assay and 14 N/15 N-FTIR analyses. A detailed study reveals that the bidirectional NOx -reactivity, namely, nitrite reductase (NIR) and NO oxidase (NOO), at a common CuII site, is governed by the geometric-preference-driven facile CuII /CuI redox process. Of broader interest, this study not only highlights potential strategies for the design of copper-based catalysts for nitrite reduction, but also strengthens the previous postulates regarding the involvement of red copper proteins in denitrification.

11.
Angew Chem Int Ed Engl ; 62(50): e202313187, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37856704

ABSTRACT

(Per)thionitrite (SNO- /SSNO- ) intermediates play vital roles in modulating nitric oxide (NO) and hydrogen sulfide (H2 S) dependent bio-signalling processes. Whilst the previous preparations of such intermediates involved reactive H2 S/HS- or sulfane sulfur (S0 ) species, the present report reveals that relatively stable thiocarbonyl compounds (such as carbon disulfide (CS2 ), thiocarbamate, thioacetic acid, and thioacetate) react with nitrite anion to yield SNO- /SSNO- . For instance, the reaction of CS2 and nitrite anion (NO2 - ) under ambient condition affords CO2 and SNO- /SSNO- . A detailed investigation involving UV/Vis, FTIR, HRMS, and multinuclear NMR studies confirm the formation of SNO- /SSNO- , which are proposed to form through an initial nucleophilic attack by nitrite anion followed by a transnitrosation step. Notably, reactions of CS2 and nitrite in the presence of thiol RSH show the formation of organic polysulfides R-Sn -R, thereby illustrating that the thiocarbonyls are capable of influencing the pool of bioavailable sulfane sulfurs. Furthermore, the availability of both NO2 - and thiocarbonyl motifs in the biological context hints at their synergistic metal-free activations leading to the generation of NO gas and various reactive sulfur species via SNO- /SSNO- .

12.
ACS Org Inorg Au ; 3(5): 246-253, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37810413

ABSTRACT

Nitrite-to-NO transformation is of prime importance due to its relevance in mammalian physiology. Although such a one-electron reductive transformation at various redox-active metal sites (e.g., Cu and Fe) has been illustrated previously, the reaction at the [ZnII] site in the presence of a sacrificial reductant like thiol has been reported to be sluggish and poorly understood. Reactivity of [(Bn3Tren)ZnII-ONO](ClO4) (1), a nitrite-bound model of the tripodal active site of carbonic anhydrase (CA), toward various organic probes, such as 4-tert-butylbenzylthiol (tBuBnSH), 2,4-di-tert-butylphenol (2,4-DTBP), and 1-fluoro-2,4-dinitrobenzene (F-DNB), reveals that the ONO-moiety in the [ZnII]-nitrite coordination motif of complex 1 acts as a mild electrophile. tBuBnSH reacts mildly with nitrite at a [ZnII] site to provide S-nitrosothiol tBuBnSNO prior to the release of NO in 10% yield, whereas the phenolic substrate 2,4-DTBP does not yield the analogous O-nitrite compound (ArONO). The presence of sulfane sulfur (S0) species such as elemental sulfur (S8) and organic polysulfides (tBuBnSnBntBu) during the reaction of tBuBnSH and [ZnII]-nitrite (1) assists the nitrite-to-NO conversion to provide NO yields of 65% (for S8) and 76% (for tBuBnSnBntBu). High-resolution mass spectrometry (HRMS) analyses on the reaction of [ZnII]-nitrite (1), tBuBnSH, and S8 depict the formation of zinc(II)-persulfide species [(Bn3Tren)ZnII-Sn-BntBu]+ (where n = 2, 3, 4, 5, and 6). Trapping of the persulfide species (tBuBnSS-) with 1-fluoro-2,4-dinitrobenzene (F-DNB) confirms its intermediacy. The significantly higher nucleophilicity of persulfide species (relative to thiol/thiolate) is proposed to facilitate the reaction with the mildly electrophilic [ZnII]-nitrite (1) complex. Complementary analyses, including multinuclear NMR, electrospray ionization-MS, UV-vis, and trapping of reactive S-species, provide mechanistic insights into the sulfane sulfur-assisted reactions between thiol and nitrite at the tripodal [ZnII]-site. These findings suggest the critical influential roles of various reactive sulfur species, such as sulfane sulfur and persulfides, in the nitrite-to-NO conversion.

13.
Inorg Chem ; 62(35): 14448-14458, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37610340

ABSTRACT

Electrocatalytic water splitting has emerged as a promising approach for clean and sustainable hydrogen production. The LaFeO3 perovskite structure exhibits intriguing properties such as mixed ionic-electronic conductivity, high stability, and abundant active sites for electrocatalysis. However, its OER and HER activities are limited by the sluggish kinetics of these reactions. To overcome this limitation, Au nanoparticles (NPs) are decorated onto the surface of LaFeO3 through a facile synthesis method. The Au NPs on the LaFeO3 surface provide additional active sites for water splitting reactions, promoting the adsorption and activation of water molecules. The presence of Au enhances the charge transfer kinetics via the heterostructure between Au NPs and LaFeO3 and facilitates electron transport during the OER and HER process. The catalyst requires only 318 and 199 mV as overpotential to attain a 50 mA cm-2 current density in 1 M KOH solution. Our results demonstrate that the Au@LaFeO3 catalyst exhibits significantly improved electrocatalytic activity compared to pure LaFeO3 and other catalysts reported in the literature. The enhanced performance is attributed due to the synergistic effects between Au NPs and LaFeO3, including an increased surface area, improved conductivity, and optimized surface energetics. Overall, the Au-decorated LaFeO3 catalyst presents a promising candidate for efficient electrocatalytic water splitting, providing a pathway for sustainable hydrogen production. The insights gained from this study contribute to the development of advanced catalysts for renewable energy technologies and pave the way for future research in the field of electrochemical water splitting.

14.
Chem Commun (Camb) ; 59(69): 10444-10447, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37555314

ABSTRACT

Copper nanoparticles (Cu NPs) have gained immense popularity in catalysis by virtue of their impressive properties and earth abundance. Herein, we incorporated small-sized copper nanoparticles into the amine-functionalized NU-1000 MOF and used this composite material as an effective catalyst for electrocatalytic Hydrogen Evolution Reaction (HER) studies.

15.
Inorg Chem ; 62(30): 11817-11828, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37437220

ABSTRACT

Water electrolysis is considered as one of the alternative potential approaches for producing renewable energy. Due to the sluggish kinetic nature of oxygen evolution reaction (OER), it encounters a significant overpotential to achieve water electrolysis. Hence, the advancement of cost-effective transition metal-based catalysts toward water splitting has gained global attention in recent years. In this work, the doping of Fe over amorphous NiWO4 increased the OER activity effectively and achieved stable oxygen evolution in the alkaline medium, which show better electrocatalytic activity as compared to crystalline tungstate. As NiWO4 has poor activity toward OER in the alkaline medium, the doping of Fe3+ will tune the electronic structure of Ni in NiWO4 and boost the OER activity. The as-synthesized Fe-doped amorphous NiWO4 exhibits a low overpotential of 230 mV to achieve a current density of 10 mA cm-2 and a lower Tafel slope value of 48 mV dec-1 toward OER in 1.0 M KOH solution. The catalyst also exhibits long-term static stability of 30 h during chronoamperometric study. The doping of Fe improves the electronic conductivity of Ni-3d states in NiWO4 which play a dominant role for better catalytic activity via synergistic interaction between Fe and active Ni sites. In future, these results offer an alternative route for precious metal-free catalysts in alkaline medium and can be explicitly used in various tungstate-based materials to increase the synergism between the doped atom and metal ions in tungstate-based materials for further improvement in the electrocatalytic performance.

16.
Chemistry ; 29(58): e202301409, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37492966

ABSTRACT

Although nitrite-to-NO transformation at various transition metals including Fe and Cu are relatively well explored, examples of such a reaction at the redox-inactive zinc(II) site are limited. The present report aims to gain insights into the reactivity of nitrite anions, nitrous acid (HONO), and organonitrite (RONO) at a dizinc(II) site. A phenolate-bridged dizinc(II)-aqua complex [LH ZnII (OH2 )]2 (ClO4 )2 (1H -Aq, where LH =tridentate N,N,O-donor monoanionic ligand) is illustrated to react with t BuONO to provide a metastable arene-nitrosonium charge-transfer complex 2H . UV-vis, FTIR, multinuclear NMR, and elemental analyses suggests the presence of a 2 : 1 arene-nitrosonium moiety. Furthermore, the reactivity of a structurally characterized zinc(II)-nitrite complex [LH ZnII (ONO)]2 (1H -ONO) with a proton-source demonstrates HONO reactivity at the dizinc(II) site. Reactivity of both RONO (R=alkyl/H) at the phenolate-bridged dizinc(II) site provides NO+ charge-transfer complex 2H . Subsequently, the reactions of 2H with exogenous reductants (such as ferrocene, thiol, phenol, and catechol) have been illustrated to generate NO. In addition, NO yielding reactivity of [LH ZnII (ONO)]2 (1H -ONO) in the presence of the above-mentioned reductants have been compared with the reactions of complex 2H . Thus, this report sheds light on the transformations of NO2 - /RONO (R=alkyl/H) to NO/NO+ at the redox-inactive zinc(II) coordination motif.

17.
Inorg Chem ; 62(19): 7195-7202, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37132510

ABSTRACT

NU-1000, being a hydrothermally stable metal-organic framework (MOF), with structural robustness is viable for functionalization with various entities. A postsynthetic modification strategy called solvent-assisted ligand incorporation (SALI) is chosen for functionalizing NU-1000 with thiol moieties using 2-mercaptobenzoic acid. In accordance with soft acid-soft base interactions, the thiol groups on NU-1000, as a scaffold, can immobilize the gold nanoparticles without much aggregation. The catalytically active gold sites on thiolated NU-1000 are utilized for hydrogen evolution reaction (HER). The catalyst delivered an overpotential of 101 mV at a current density of 10 mAcm-2 in 0.5 M H2SO4. The faster charge transfer kinetics determined from the Tafel slope of 44 mV/dec enhances the HER activity. The sustainable performance of the catalyst for 36 h proves its utility as a potential catalyst to produce neat hydrogen.

18.
ACS Appl Mater Interfaces ; 15(22): 26928-26938, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37243613

ABSTRACT

Exploring highly active and earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is considered one of the prime prerequisites for generating green hydrogen. Herein, a competent microwave-assisted decoration of Ru nanoparticles (NPs) over the bimetallic layered double hydroxide (LDH) material is proposed. The same has been used as an OER catalyst in a 1 M KOH solution. The catalyst shows an interesting Ru NP loading dependency toward the OER, and a concentration-dependent volcanic relationship between electronic charge and thermoneutral current densities has been observed. This volcanic relation shows that with an optimum concentration of Ru NPs, the catalyst could effectively catalyze the OER by obeying the Sabatier principle of ion adsorption. The optimized Ru@CoFe-LDH(3%) demands an overpotential value of only 249 mV to drive a current density value of 10 mA/cm2 with the highest TOF value of 14.4 s-1 as compared to similar CoFe-LDH-based materials. In situ impedance experiments and DFT studies demonstrated that incorporating the Ru NPs boosts the intrinsic OER activity of the CoFe-LDH on account of sufficient activated redox reactivities for both Co and lattice oxygen of the CoFe-LDH. As a result, compared with the pristine CoFe-LDH, the current density of Ru@CoFe-LDH(3%) at 1.55 V vs RHE normalized by ECSA increased by 86.58%. First-principles DFT analysis shows that the optimized Ru@CoFe-LDH(3%) possesses a lower d-band center that indicates weaker and more optimal binding characteristics for OER intermediates, improving the overall OER performance. Overall, this report displays an excellent correlation between the decorated concentration of NPs over the LDH surface which can tune the OER activity as verified by both experimental and theoretical calculations.

19.
ACS Appl Mater Interfaces ; 15(20): 24504-24516, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37162125

ABSTRACT

Development of the multifaceted metal-organic framework (MOF) with in situ engineered task-specific sites can promise proficient oxygen evolution reaction (OER) and high-temperature adsorption cum mild-condition fixation of CO2. In fact, effective assimilation of these attributes onto a single material with advance performance characteristics is practically imperative in view of renewable energy application and carbon-footprint reduction. Herein, we developed a three-fold interpenetrated robust Co(II) framework that embraces both redox-active and hydrogen-bond donor moieties inside the microporous channel. The activated MOF demonstrates notable OER catalysis in alkaline medium via quasi-reversible Co2+/Co3+ couple and unveils low overpotential with impressive 53.5 mV/dec Tafel slope that overpowers some benchmark, commercial, as well as contemporary materials. In particular, significantly increased turnover frequency (3.313 s-1 at 400 mV) and fairly low charge-transfer resistance (3.02 Ω) compared to Co3O4, NiO, and majority of redox-active MOFs together with 91% Faradaic efficiency and notable framework durability after multiple OER cycles endorse high-performance water oxidation. Pore-wall decked urea groups benefit appreciable CO2 adsorption even at elevated temperatures with considerable MOF-CO2 interactions and exhibit recurrent capture-release cycles at diverse temperatures. Interestingly, CO2 selectivity displays radical upsurge with temperature rise, affording 40% improved CO2/N2 value of 200 at 313 K, which outperforms many porous adsorbents and delineates real-time CO2 scavenging potential. The guest-free MOF effectively catalyzes solvent-free CO2 cycloaddition with broad substrate tolerance and satisfactory reusability under relatively mild condition. Opposed to the common Lewis acid-mediated reaction, two-point hydrogen-bonding activates the substrate, as supported from controlled experiments, juxtaposing the performance of an un-functionalized MOF and fluorescence modification-derived framework-epoxide interaction, providing valuable insights on unconventional cycloaddition route in the MOF.

20.
Inorg Chem ; 62(16): 6411-6420, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37036319

ABSTRACT

Developing cost-efficient and noble metal free electrocatalysts is vastly anticipated for the oxygen evolution reaction (OER). Therefore, in this study, to lift the thermodynamic and kinetic activity of the OER, we attempted to synthesize a bimetallic nickel and manganese-based zeolite imidazolate framework system in a fiber form. For this synthesis, a bottom-up approach has been followed through wet chemical analysis, and electrospinning was utilized for fiber formation. The resultant fiber has shown a lesser overpotential of 256 mV at a benchmarking current density of 10 mA cm-2 under 1 M KOH conditions. As expected, the attained Tafel slope and charge transfer resistance values are lesser. The observed results reveal that the synergism between the Ni and Mn nodes on the imidazolate framework successfully promotes the thermodynamic formation of *O and *OOH intermediates, which significantly helps to improve the faster OER kinetics at the electrode-electrolyte interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...