Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Intell (Dordr) ; 52(11): 12630-12667, 2022.
Article in English | MEDLINE | ID: mdl-36161208

ABSTRACT

A novel optimization algorithm called hybrid salp swarm algorithm with teaching-learning based optimization (HSSATLBO) is proposed in this paper to solve reliability redundancy allocation problems (RRAP) with nonlinear resource constraints. Salp swarm algorithm (SSA) is one of the newest meta-heuristic algorithms which mimic the swarming behaviour of salps. It is an efficient swarm optimization technique that has been used to solve various kinds of complex optimization problems. However, SSA suffers a slow convergence rate due to its poor exploitation ability. In view of this inadequacy and resulting in a better balance between exploration and exploitation, the proposed hybrid method HSSATLBO has been developed where the searching procedures of SSA are renovated based on the TLBO algorithm. The good global search ability of SSA and fast convergence of TLBO help to maximize the system reliability through the choices of redundancy and component reliability. The performance of the proposed HSSATLBO algorithm has been demonstrated by seven well-known benchmark problems related to reliability optimization that includes series system, complex (bridge) system, series-parallel system, overspeed protection system, convex system, mixed series-parallel system, and large-scale system with dimensions 36, 38, 40, 42 and 50. After illustration, the outcomes of the proposed HSSATLBO are compared with several recently developed competitive meta-heuristic algorithms and also with three improved variants of SSA. Additionally, the HSSATLBO results are statistically investigated with the wilcoxon sign-rank test and multiple comparison test to show the significance of the results. The experimental results suggest that HSSATLBO significantly outperforms other algorithms and has become a remarkable and promising tool for solving RRAP.

2.
Neural Comput Appl ; 34(23): 20865-20898, 2022.
Article in English | MEDLINE | ID: mdl-35937044

ABSTRACT

The main objective of this paper is to present an improved neural network algorithm (INNA) for solving the reliability-redundancy allocation problem (RRAP) with nonlinear resource constraints. In this RRAP, both the component reliability and the redundancy allocation are to be considered simultaneously. Neural network algorithm (NNA) is one of the newest and efficient swarm optimization algorithms having a strong global search ability that is very adequate in solving different kinds of complex optimization problems. Despite its efficiency, NNA experiences poor exploitation, which causes slow convergence and also restricts its practical application of solving optimization problems. Considering this deficiency and to obtain a better balance between exploration and exploitation, searching procedure for NNA is reconstructed by implementing a new logarithmic spiral search operator and the searching strategy of the learner phase of teaching-learning-based optimization (TLBO) and an improved NNA has been developed in this paper. To demonstrate the performance of INNA, it is evaluated against seven well-known reliability optimization problems and finally compared with other existing meta-heuristics algorithms. Additionally, the INNA results are statistically investigated with the Wilcoxon sign-rank test and Multiple comparison test to show the significance of the results. Experimental results reveal that the proposed algorithm is highly competitive and performs better than previously developed algorithms in the literature.

SELECTION OF CITATIONS
SEARCH DETAIL
...