Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
EJNMMI Res ; 13(1): 2, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36645586

ABSTRACT

BACKGROUND: Radioguided surgery (RGS) has recently emerged as a valuable new tool in the management of recurrent prostate cancer (PCa). After preoperative injection of a 99mTc-labeled prostate-specific membrane antigen (PSMA) inhibitor, radioguided intraoperative identification and resection of lesions is facilitated by means of suitable γ-probes. First clinical experiences show the feasibility of RGS and suggest superiority over conventional lymph node dissection in recurrent PCa. However, commonly used [99mTc]Tc-PSMA-I&S exhibits slow whole-body clearance, thus hampering optimal tumor-to-background ratios (TBR) during surgery. We therefore aimed to develop novel 99mTc-labeled, PSMA-targeted radioligands with optimized pharmacokinetic profile to increase TBR at the time of surgery. METHODS: Three 99mTc-labeled N4-PSMA ligands were preclinically evaluated and compared to [99mTc]Tc-PSMA-I&S. PSMA affinity (IC50) and internalization were determined on LNCaP cells. Lipophilicity was assessed by means of the distribution coefficient logD7.4 and an ultrafiltration method was used to determine binding to human plasma proteins. Biodistribution studies and static µSPECT/CT-imaging were performed at 6 h p.i. on LNCaP tumor-bearing CB17-SCID mice. RESULTS: The novel N4-PSMA tracers were readily labeled with [99mTc]TcO4- with RCP > 95%. Comparable and high PSMA affinity was observed for all [99mTc]Tc-N4-PSMA-ligands. The ligands showed variable binding to human plasma and medium to low lipophilicity (logD7.4 - 2.6 to - 3.4), both consistently decreased compared to [99mTc]Tc-PSMA-I&S. Biodistribution studies revealed comparable tumor uptake among all [99mTc]Tc-N4-PSMA-ligands and [99mTc]Tc-PSMA-I&S, while clearance from most organs was superior for the novel tracers. Accordingly, increased TBR were achieved. [99mTc]Tc-N4-PSMA-12 showed higher TBR than [99mTc]Tc-PSMA-I&S for blood and all evaluated tissue. In addition, a procedure suitable for routine clinical production of [99mTc]Tc-N4-PSMA-12 was established. Labeling with 553 ± 187 MBq was achieved with RCP of 98.5 ± 0.6% (n = 10). CONCLUSION: High tumor accumulation and favorable clearance from blood and non-target tissue make [99mTc]Tc-N4-PSMA-12 an attractive tracer for RGS, possibly superior to currently established [99mTc]Tc-PSMA-I&S. Its GMP-production according to a method presented here and first clinical investigations with this novel radioligand is highly recommended.

2.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36145354

ABSTRACT

Current radiolabeled gastrin-releasing peptide receptor (GRPR) ligands usually suffer from high accumulation in GRPR-positive organs (pancreas, stomach), limiting tumor-to-background contrast in the abdomen. In novel N4-bombesin derivatives this was addressed by substitutions at the Gln7-Trp8 site within the MJ9 peptide (H-Pip5-phe6-Gln7-Trp8-Ala9-Val10-Gly11-His12-Sta13-Leu14-NH2) either by homoserine (Hse7), ß-(3-benzothienyl) alanine (Bta8) or α-methyl tryptophan (α-Me-Trp8), with the aim of optimizing pharmacokinetics. We prepared and characterized the peptide conjugates 6-carboxy-1,4,8,11-tetraazaundecane (N4)-asp-MJ9, N4-asp-[Bta8]MJ9, N4-[Hse7]MJ9 and N4-[α-Me-Trp8]MJ9, and evaluated these compounds in vitro (GRPR affinity via IC50,inverse; internalization; lipophilicity via logD7.4) and in vivo (biodistribution and µSPECT/CT studies at 1 h post injection (p.i.) in PC-3 tumor-bearing CB17-SCID mice). 99mTc-labeling resulted in radiochemical yields (RCYs) > 95%. All 99mTc-labeled MJ9 analogues showed comparable or higher GRPR affinity than the external reference [99mTc]Tc-Demobesin 4. Receptor-bound fractions were noticeably higher than that of the reference. Despite a slightly enhanced lipophilicity, all novel MJ9 derivatives revealed improved in vivo pharmacokinetics compared to the reference. The Bta8-modified ligand revealed the most favorable tumor-to-abdomen contrast at 1 h p.i. Substitutions at the Gln7-Trp8 site within GRPR ligands hold great potential to modify pharmacokinetics for improved imaging.

3.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36145382

ABSTRACT

A meticulously adjusted pharmacokinetic profile and especially fine-tuned blood clearance kinetics are key characteristics of therapeutic radiopharmaceuticals. We, therefore, aimed to develop a method that allowed the estimation of blood clearance kinetics in vitro. For this purpose, 177Lu-labeled PSMA radioligands were subjected to a SEC column with human serum albumin (HSA) dissolved in a mobile phase. The HSA-mediated retention time of each PSMA ligand generated by this novel 'albumin-mediated size exclusion chromatography' (AMSEC) was converted to a ligand-specific apparent molecular weight (MWapp), and a normalization accounting for unspecific interactions between individual radioligands and the SEC column matrix was applied. The resulting normalized MWapp,norm. could serve to estimate the blood clearance of renally excreted radioligands by means of their influence on the highly size-selective process of glomerular filtration (GF). Based on the correlation between MW and the glomerular sieving coefficients (GSCs) of a set of plasma proteins, GSCcalc values were calculated to assess the relative differences in the expected GF/blood clearance kinetics in vivo and to select lead candidates among the evaluated radioligands. Significant differences in the MWapp,norm. and GSCcalc values, even for stereoisomers, were found, indicating that AMSEC might be a valuable and high-resolution tool for the preclinical selection of therapeutic lead compounds for clinical translation.

4.
J Nucl Med ; 63(10): 1489-1495, 2022 10.
Article in English | MEDLINE | ID: mdl-35086894

ABSTRACT

The prostate-specific membrane antigen (PSMA)-targeted radiohybrid (rh) ligand [177Lu]Lu-rhPSMA-7.3 has recently been assessed in a pretherapeutic dosimetry study on prostate cancer patients. In comparison to [177Lu]Lu-PSMA I&T, application of [177Lu]Lu-rhPSMA-7.3 resulted in a significantly improved tumor dose but also higher kidney accumulation. Although rhPSMA-7.3 has been initially selected as the lead compound for diagnostic application based on the characterization of its gallium complex, a systematic comparison of the most promising 177Lu-labeled rhPSMA ligands is still missing. Thus, this study aimed to identify the rhPSMA ligand with the most favorable pharmacokinetics for 177Lu-radioligand therapy. Methods: The 4 isomers of [177Lu]Lu-rhPSMA-7 (namely [177Lu]Lu-rhPSMA-7.1, -7.2, -7.3, and -7.4), along with the novel radiohybrid ligands [177Lu]Lu-rhPSMA-10.1 and -10.2, were compared with the state-of-the-art compounds [177Lu]Lu-PSMA I&T and [177Lu]Lu-PSMA-617. The comparative evaluation comprised affinity studies (half-maximal inhibitory concentration) and internalization experiments on LNCaP cells, as well as lipophilicity measurements. In addition, we determined the apparent molecular weight (AMW) of each tracer as a parameter for human serum albumin (HSA) binding. Biodistribution studies and small-animal SPECT imaging were performed on LNCaP-tumor bearing mice at 24 h after injection. Results: 177Lu labeling of the radiohybrids was performed according to the established procedures for the currently established PSMA-targeted ligands. All ligands showed potent binding to PSMA-expressing LNCaP cells, with affinities in the low nanomolar range and high internalization rates. Surprisingly, the most pronounced differences regarded the HSA-related AMW. Although [177Lu]Lu-rhPSMA-7 isomers demonstrated the highest AMW and thus strongest HSA interactions, [177Lu]Lu-rhPSMA-10.1 showed an AMW lower than for [177Lu]Lu-rhPSMA-7.3 but higher than for the 177Lu-labeled references PSMA I&T and PSMA-617. In biodistribution studies, [177Lu]Lu-rhPSMA-10.1 exhibited the lowest kidney uptake and fastest excretion from the blood pool of all rhPSMA ligands while preserving a high tumor accumulation. Conclusion: Clinical investigation of [177Lu]Lu-rhPSMA-10.1 is highly warranted to determine whether the favorable pharmacokinetics observed in mice will also result in high tumor uptake and decreased absorbed dose to kidneys and other nontarget tissues in patients.


Subject(s)
Gallium , Prostatic Neoplasms , Animals , Humans , Ligands , Male , Mice , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Serum Albumin, Human , Tissue Distribution , Urea/analogs & derivatives
5.
J Clin Med ; 9(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297518

ABSTRACT

Arterial hypertension affects the survival of the kidney graft and the cardiovascular morbidity and mortality of the recipient after kidney transplantation (KTx). Thus, antihypertensive treatment is necessary for a vast majority of these patients. Long-term data on antihypertensive drugs and their effects on allograft function after KTx is still limited, and further investigation is required. We retrospectively analyzed a cohort of 854 recipients who received a kidney transplant at our transplant center between 2007 and 2015 with regard to antihypertensive treatment and its influence on graft function and survival. 1-y after KTx, 95.3% patients were treated with antihypertensive therapy. Of these, 38.6% received mono- or dual-drug therapy, 38.0% received three to four drugs and 8.1% were on a regimen of ≥5 drugs. Beta-blockers were the most frequently used antihypertensive agents (68.1%). Neither the use of angiotensin-converting enzyme inhibitor/angiotensin receptor blockers (51.9%) and calcium channel blockers (51.5%), nor the use the use of loop diuretics (38.7%) affected allograft survival. Arterial hypertension and the number of antihypertensive agents were associated with unfavorable allograft outcomes (each p < 0.001). In addition to the well-known risk factors of cold ischemic time and acute rejection episodes, the number of antihypertensive drugs after one year, which reflects the severity of hypertension, is a strong predictor of unfavorable allograft survival.

6.
Phys Chem Chem Phys ; 9(27): 3577-89, 2007 Jul 21.
Article in English | MEDLINE | ID: mdl-17612723

ABSTRACT

The major objective of this research project was to reach a microscopic understanding of the structure, function and dynamics of V-Mo-(W) mixed oxides for the partial oxidation of acrolein to acrylic acid. Different model catalysts (from binary and ternary vanadium molybdenum oxides up to quaternary oxides with additional tungsten) were prepared via a solid state preparation route and hydrochemical preparation of precursors by spray-drying or crystallisation with subsequent calcination. The phase composition was investigated ex situ by XRD and HR-TEM. Solid state prepared samples are characterised by crystalline phases associated to suitable phase diagrams. Samples prepared from crystallised and spray-dried precursors show crystalline phases which are not part of the phase diagram. Amorphous or nanocrystalline structures are only found in tungsten doped samples. The kinetics of the partial oxidation as well as the catalysts' structure have been studied in situ by XAS, XRD, temperature programmed reaction and reduction as well as by a transient isotopic tracing technique (SSITKA). The reduction and re-oxidation kinetics of the bulk phase have been evaluated by XAS. A direct influence not only of the catalysts' composition but also of the preparation route is shown. Altogether correlations are drawn between structure, oxygen dynamics and the catalytic performance in terms of activity, selectivity and long-term stability. A model for the solid state behaviour under reaction conditions has been developed. Furthermore, isotope exchange experiments provided a closer image of the mechanism of the selective acrolein oxidation. Based on the in situ characterisation in combination with micro kinetic modelling a detailed reaction model which describes the oxygen exchange and the processes at the catalyst more precisely is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...