Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
J Org Chem ; 88(19): 13727-13740, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37751412

ABSTRACT

The synthesis of imidazole fused spirocyclic ketones as templates for acetyl-CoA carboxylase (ACC) inhibitors is reported. By completing the spirocyclic ring closure via divergent pathways, the synthesis of these regioisomers from common intermediates was developed. Through an aldehyde homologation/transmetalation strategy, one isomer was formed selectively. The second desired isomer was obtained via an intramolecular aromatic homolytic substitution reaction. Preparation of these isomeric spiroketones provided templates which, upon elaboration, led to key structure-activity relationship (SAR) points for delivery of potent ACC inhibitors.


Subject(s)
Acetyl-CoA Carboxylase , Enzyme Inhibitors , Acetyl-CoA Carboxylase/metabolism , Isomerism , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology
2.
J Med Chem ; 66(5): 3195-3211, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36802610

ABSTRACT

The melanocortin-4 receptor (MC4R) is a centrally expressed, class A GPCR that plays a key role in the regulation of appetite and food intake. Deficiencies in MC4R signaling result in hyperphagia and increased body mass in humans. Antagonism of MC4R signaling has the potential to mitigate decreased appetite and body weight loss in the setting of anorexia or cachexia due to underlying disease. Herein, we report on the identification of a series of orally bioavailable, small-molecule MC4R antagonists using a focused hit identification effort and the optimization of these antagonists to provide clinical candidate 23. Introduction of a spirocyclic conformational constraint allowed for simultaneous optimization of MC4R potency and ADME attributes while avoiding the production of hERG active metabolites observed in early series leads. Compound 23 is a potent and selective MC4R antagonist with robust efficacy in an aged rat model of cachexia and has progressed into clinical trials.


Subject(s)
Appetite , Receptor, Melanocortin, Type 4 , Rats , Humans , Animals , Cachexia/drug therapy , Anorexia/drug therapy , Molecular Conformation
3.
J Med Chem ; 65(22): 15000-15013, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36322383

ABSTRACT

Discovery efforts leading to the identification of ervogastat (PF-06865571), a systemically acting diacylglycerol acyltransferase (DGAT2) inhibitor that has advanced into clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis, are described herein. Ervogastat is a first-in-class DGAT2 inhibitor that addressed potential development risks of the prototype liver-targeted DGAT2 inhibitor PF-06427878. Key design elements that culminated in the discovery of ervogastat are (1) replacement of the metabolically labile motif with a 3,5-disubstituted pyridine system, which addressed potential safety risks arising from a cytochrome P450-mediated O-dearylation of PF-06427878 to a reactive quinone metabolite precursor, and (2) modifications of the amide group to a 3-THF group, guided by metabolite identification studies coupled with property-based drug design.


Subject(s)
Diacylglycerol O-Acyltransferase , Non-alcoholic Fatty Liver Disease , Humans , Drug Design , Liver Cirrhosis , Non-alcoholic Fatty Liver Disease/drug therapy
4.
ACS Med Chem Lett ; 13(2): 250-256, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35178182

ABSTRACT

The metabolic oxidation of drug-like small molecules by aldehyde oxidase (AO) has commonly been mitigated through the incorporation of deuterium at the oxidation site. We report that dimethylformamide dimethyl acetal and related compounds undergo rapid CH to CD isotopic exchange upon exposure to methanol-d and similar deuterated alcohols. This isotopic exchange process can be used to synthesize Me2NCD(OMe)2 and has significant implications for the use of Me2NCD(OMe)2 in the synthesis of specifically deuterium-labeled compounds. The application of Me2NCD(OMe)2 to the synthesis of various heterocycles that have been associated with AO metabolism is described, and we report the impact of deuteration on the rate of in vitro AO-mediated metabolism.

5.
J Med Chem ; 61(16): 7273-7288, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30036059

ABSTRACT

Studies on indole-3-carboxylic acid derivatives as direct activators of human adenosine monophosphate-activated protein kinase (AMPK) α1ß1γ1 isoform have culminated in the identification of PF-06409577 (1), PF-06885249 (2), and PF-06679142 (3) as potential clinical candidates. Compounds 1-3 are primarily cleared in animals and humans via glucuronidation. Herein, we describe the biosynthetic preparation, purification, and structural characterization of the glucuronide conjugates of 1-3. Spectral characterization of the purified glucuronides M1, M2, and M3 indicated that they were acyl glucuronide derivatives. In vitro pharmacological evaluation revealed that all three acyl glucuronides retained selective activation of ß1-containing AMPK isoforms. Inhibition of de novo lipogenesis with representative parent carboxylic acids and their respective acyl glucuronide conjugates in human hepatocytes demonstrated their propensity to activate cellular AMPK. Cocrystallization of the AMPK α1ß1γ1 isoform with 1-3 and M1-M3 provided molecular insights into the structural basis for AMPK activation by the glucuronide conjugates.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Indoles/chemistry , Indoles/metabolism , Lipogenesis/drug effects , AMP-Activated Protein Kinases/chemistry , Animals , Cells, Cultured , Crystallization/methods , Enzyme Activation/drug effects , Glucuronides/chemistry , Glucuronides/metabolism , Glucuronides/pharmacokinetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Indoles/pharmacology , Macaca fascicularis , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rats, Wistar , Uridine Diphosphate Glucuronic Acid/pharmacology
6.
J Med Chem ; 61(6): 2372-2383, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29466005

ABSTRACT

Optimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species. A correlation of in vivo renal clearance in rats with in vitro uptake by human and rat renal organic anion transporters (human OAT/rat Oat) was identified. Variation of polar functional groups was critical to mitigate active renal clearance mediated by the Oat3 transporter. Modification of either the 6-chloroindole core to a 4,6-difluoroindole or the 5-phenyl substituent to a substituted 5-(3-pyridyl) group provided improved metabolic stability while minimizing propensity for active transport by OAT3.


Subject(s)
AMP-Activated Protein Kinases/drug effects , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Animals , Enzyme Activation/drug effects , Enzyme Activators/pharmacokinetics , Humans , Indoles/pharmacokinetics , Intestinal Absorption , Kidney/drug effects , Kidney/enzymology , Male , Models, Molecular , Organic Anion Transporters, Sodium-Independent/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship
8.
ACS Cent Sci ; 3(2): 101-109, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28280776

ABSTRACT

The microsolvated state of a molecule, represented by its interactions with only a small number of solvent molecules, can play a key role in determining the observable bulk properties of the molecule. This is especially true in cases where strong local hydrogen bonding exists between the molecule and the solvent. One method that can probe the microsolvated states of charged molecules is differential mobility spectrometry (DMS), which rapidly interrogates an ion's transitions between a solvated and desolvated state in the gas phase (i.e., few solvent molecules present). However, can the results of DMS analyses of a class of molecules reveal information about the bulk physicochemical properties of those species? Our findings presented here show that DMS behaviors correlate strongly with the measured solution phase pKa and pKb values, and cell permeabilities of a set of structurally related drug molecules, even yielding high-resolution discrimination between isomeric forms of these drugs. This is due to DMS's ability to separate species based upon only subtle (yet predictable) changes in structure: the same subtle changes that can influence isomers' different bulk properties. Using 2-methylquinolin-8-ol as the core structure, we demonstrate how DMS shows promise for rapidly and sensitively probing the physicochemical properties of molecules, with particular attention paid to drug candidates at the early stage of drug development. This study serves as a foundation upon which future drug molecules of different structural classes could be examined.

9.
J Med Chem ; 59(17): 8068-81, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27490827

ABSTRACT

Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetic Nephropathies/drug therapy , Enzyme Activators/chemistry , Indoles/chemistry , Administration, Oral , Adsorption , Animals , Crystallography, X-Ray , Dogs , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacokinetics , Enzyme Activators/pharmacology , High-Throughput Screening Assays , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemical synthesis , Indoles/pharmacokinetics , Indoles/pharmacology , Injections, Intravenous , Macaca fascicularis , Male , Models, Molecular , Protein Conformation , Rats
10.
J Org Chem ; 81(9): 3509-19, 2016 05 06.
Article in English | MEDLINE | ID: mdl-27056793

ABSTRACT

The synthesis of a series of pharmaceutically important N-protected methyl-substituted spirocyclic piperidine-azetidine (2,7-diazaspiro[3.5]nonane) and spirocyclic piperidine-pyrrolidine (2,8-diazaspiro[4.5]decane) ring systems was developed. These motifs contain two differentiated sites (protected secondary amines) to allow for further functionalization via reductive amination, amidation, or other chemistry. The methyl-substituted spiroazetidine ring systems were accessed using nitrile lithiation/alkylation chemistry while the methyl-substituted spiropyrrolidines were synthesized by 1,4-addition reactions with nitroalkanes, followed by reduction and cyclization. These conditions were then scaled for the synthesis of 1-methyl spirocyclic piperidine-pyrrolidine with a classical resolution of the product using a tartaric acid derivative to isolate a single enantiomer.

11.
J Med Chem ; 58(21): 8513-28, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26509551

ABSTRACT

Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Clinical evidence suggests a causal role for MPO in various autoimmune and inflammatory disorders including vasculitis and cardiovascular and Parkinson's diseases, implying that MPO inhibitors may represent a therapeutic treatment option. Herein, we present the design, synthesis, and preclinical evaluation of N1-substituted-6-arylthiouracils as potent and selective inhibitors of MPO. Inhibition proceeded in a time-dependent manner by a covalent, irreversible mechanism, which was dependent upon MPO catalysis, consistent with mechanism-based inactivation. N1-Substituted-6-arylthiouracils exhibited low partition ratios and high selectivity for MPO over thyroid peroxidase and cytochrome P450 isoforms. N1-Substituted-6-arylthiouracils also demonstrated inhibition of MPO activity in lipopolysaccharide-stimulated human whole blood. Robust inhibition of plasma MPO activity was demonstrated with the lead compound 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999, 8) upon oral administration to lipopolysaccharide-treated cynomolgus monkeys. On the basis of its pharmacological and pharmacokinetic profile, PF-06282999 has been advanced to first-in-human pharmacokinetic and safety studies.


Subject(s)
Acetamides/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Enzyme Inhibitors/pharmacology , Peroxidase/antagonists & inhibitors , Pyrimidinones/pharmacology , Acetamides/chemistry , Acetamides/pharmacokinetics , Animals , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Peroxidase/metabolism , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics , Rats, Wistar
12.
J Med Chem ; 58(18): 7173-85, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26349027

ABSTRACT

The medicinal chemistry and preclinical biology of imidazopyridine-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) is described. A screening hit 1 with low lipophilic efficiency (LipE) was optimized through two key structural modifications: (1) identification of the pyrrolidine amide group for a significant LipE improvement, and (2) insertion of a sp(3)-hybridized carbon center in the core of the molecule for simultaneous improvement of N-glucuronidation metabolic liability and off-target pharmacology. The preclinical candidate 9 (PF-06424439) demonstrated excellent ADMET properties and decreased circulating and hepatic lipids when orally administered to dyslipidemic rodent models.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Imidazoles/chemistry , Pyridines/chemistry , Pyrrolidines/chemistry , Animals , Cyclopropanes/chemistry , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Dogs , Dyslipidemias/drug therapy , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Lipid Metabolism/drug effects , Male , Mice, Knockout , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, LDL/genetics , Sf9 Cells , Spodoptera , Stereoisomerism , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 25(22): 5352-6, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26411795

ABSTRACT

A novel series of spirocyclic-diamine based, isoform non-selective inhibitors of acetyl-CoA carboxylase (ACC) is described. These spirodiamine derivatives were discovered by design of a library to mimic the structural rigidity and hydrogen-bonding pattern observed in the co-crystal structure of spirochromanone inhibitor I. The lead compound 3.5.1 inhibited de novo lipogenesis in rat hepatocytes, with an IC50 of 0.30 µM.


Subject(s)
Acetyl Coenzyme A/metabolism , Acetyl-CoA Carboxylase/antagonists & inhibitors , Drug Discovery , Hepatocytes/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Animals , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hepatocytes/enzymology , Humans , Inhibitory Concentration 50 , Models, Biological , Molecular Structure , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
14.
J Med Chem ; 57(24): 10512-26, 2014 Dec 26.
Article in English | MEDLINE | ID: mdl-25423286

ABSTRACT

Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. We disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Hepatocytes/drug effects , Ketones/metabolism , Lipogenesis/drug effects , Microsomes/drug effects , Acetyl-CoA Carboxylase/metabolism , Adult , Animals , Area Under Curve , Cells, Cultured , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Dogs , Double-Blind Method , Hepatocytes/cytology , Humans , Male , Malonyl Coenzyme A/metabolism , Microsomes/metabolism , Middle Aged , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Rats, Wistar , Structure-Activity Relationship , Young Adult
15.
Bioorg Med Chem Lett ; 23(19): 5410-4, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23953189

ABSTRACT

The optimization for selectivity and central receptor occupancy for a series of spirocyclic azetidine-piperidine inverse agonists of the ghrelin receptor is described. Decreased mAChR muscarinic M2 binding was achieved by use of a chiral indane in place of a substituted benzylic group. Compounds with desirable balance of human in vitro clearance and ex vivo central receptor occupancy were discovered by incorporation of heterocycles. Specifically, heteroaryl rings with nitrogen(s) vicinal to the indane linkage provided the most attractive overall properties.


Subject(s)
Central Nervous System/drug effects , Receptors, Ghrelin/antagonists & inhibitors , Amino Acid Sequence , Animals , Binding Sites , Drug Inverse Agonism , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Indans/chemistry , Indans/pharmacology , Inhibitory Concentration 50 , Isomerism , Molecular Structure , Protein Binding/drug effects , Rats , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 23(1): 194-7, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23177788

ABSTRACT

A novel GPR119 agonist based on the 2,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole scaffold was designed through lead optimization starting from pyrazole-based GPR119 agonist 1. The design is centered on the conformational restriction of the core scaffold, while minimizing the change in spatial relationships of two key pharmacophoric elements (piperidine-carbamate and aryl sulfone).


Subject(s)
Pyrazoles/chemistry , Receptors, G-Protein-Coupled/agonists , Carbamates/chemistry , Humans , Piperidines/chemistry , Protein Binding , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Receptors, G-Protein-Coupled/metabolism , Structure-Activity Relationship
17.
Bioorg Med Chem Lett ; 22(17): 5721-6, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22858141

ABSTRACT

PDE8B is a cAMP-specific isoform of the broader class of phosphodiesterases (PDEs). As no selective PDE8B inhibitors had been reported, a high throughput screen was run with the goal of identifying selective tools for exploring the potential therapeutic utility of PDE8B inhibition. Of the numerous hits, one was particularly attractive since it was amenable to rapid deconstruction leading to inhibitors with very high ligand efficiency (LE) and lipophilic ligand efficiency (LLE). These triazolopyrimidines were optimized for potency, selectivity and ADME properties ultimately leading to compound 42. This compound was highly potent and selective with good bioavailability and advanced into pre-clinical development.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Diabetes Mellitus/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Animals , Cells, Cultured , Diabetes Mellitus/drug therapy , Drug Discovery , Enzyme Inhibitors/metabolism , High-Throughput Screening Assays , Humans , Insulin/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Ligands , Microsomes, Liver/metabolism , Protein Binding , Pyrimidines/metabolism , Rats , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology
18.
Bioorg Med Chem Lett ; 22(13): 4281-7, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22677316

ABSTRACT

The discovery of spirocyclic piperidine-azetidine inverse agonists of the ghrelin receptor is described. The characterization and redressing of the issues associated with these compounds is detailed. An efficient three-step synthesis and a binding assay were relied upon as the primary means of rapidly improving potency and ADMET properties for this class of inverse agonist compounds. Compound 10 n bearing distributed polarity in the form of an imidazo-thiazole acetamide and a phenyl triazole is a unit lower in logP and has significantly improved binding affinity compared to the hit molecule 10a, providing support for further optimization of this series of compounds.


Subject(s)
Azetidines/chemistry , Piperidines/chemistry , Receptors, Ghrelin/agonists , Animals , Azetidines/chemical synthesis , Azetidines/pharmacokinetics , Drug Inverse Agonism , Humans , Microsomes, Liver/metabolism , Rats , Receptors, Ghrelin/metabolism , Structure-Activity Relationship
19.
J Org Chem ; 77(3): 1497-506, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22239115

ABSTRACT

Synthesis of oxo-dihydrospiroindazole-based acetyl-CoA carboxylase (ACC) inhibitors is reported. The dihydrospiroindazoles were assembled in a regioselective manner in six steps from substituted hydrazines and protected 4-formylpiperidine. Enhanced regioselectivity in the condensation between a keto enamine and substituted hydrazines was observed when using toluene as the solvent, leading to selective formation of 1-substituted spiroindazoles. The 2-substituted spiroindazoles were formed selectively from alkyl hydrazones by ring closure with Vilsmeier reagent. The key step in the elaboration to the final products is the conversion of an intermediate olefin to the desired ketone through elimination of HBr from an O-methyl bromohydrin. This methodology enabled the synthesis of each desired regioisomer on 50-75 g scale with minimal purification. Acylation of the resultant spirocyclic amines provided potent ACC inhibitors.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Chemistry Techniques, Synthetic/methods , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Indazoles/chemical synthesis , Indazoles/pharmacology , Piperidines/chemical synthesis , Piperidines/pharmacology , Alkenes/chemistry , Alkylation , Enzyme Inhibitors/chemistry , Indazoles/chemistry , Ketones/chemistry , Piperidines/chemistry , Pyrazoles/chemistry , Stereoisomerism , Substrate Specificity
20.
Bioorg Med Chem Lett ; 19(12): 3253-8, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19428251

ABSTRACT

The synthesis, in vitro properties, and in vivo pharmacokinetics for a series of sulfoximine-substituted trifluoromethylpyrimidines as inhibitors of proline-rich tyrosine kinase, a target for the possible treatment of osteoporosis, are described. These compounds were prepared as surrogates of the corresponding sulfone compound 1. Sulfone 1 was an attractive PYK2 lead compound; however, subsequent studies determined this compound possessed high dofetilide binding, which is an early indicator of cardiovascular safety. Surprisingly, the corresponding sulfoximine analogs displayed significantly lower dofetilide binding, which, for N-methylsulfoximine (S)-14a, translated to lower activity in a patch clamp hERG K(+) ion channel screen. In addition, compound (S)-14a shows good oral exposure in a rat pharmacokinetic model.


Subject(s)
Ether-A-Go-Go Potassium Channels/metabolism , Focal Adhesion Kinase 2/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/pharmacology , Administration, Oral , Animals , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Imines/chemistry , Osteoporosis/drug therapy , Patch-Clamp Techniques , Phenethylamines , Pyrimidines/pharmacokinetics , Rats , Structure-Activity Relationship , Sulfonamides , Sulfones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL