Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(15): 10342-10356, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38574341

ABSTRACT

In acidic HZSM-5 zeolite, the reactivity of a methanol molecule interacting with the zeolite proton is amenable to modification via coadsorbing a stochiometric amount of an electron density donor E to form the [(E)(CH3OH)(HZ)] complex. The rate of the methanol in this complex undergoing dehydration to dimethyl ether was determined for a series of E with proton affinity (PA) ranging from 659 kJ mol-1 for C6F6 to 825 kJ mol-1 for C4H8O and was found to follow the expression: Ln(Rate) - Ln(RateN2) = ß(PA - PAN2)γ, where E = N2 is the reference and ß and γ are constants. This trend is probably due to the increased stability of the solvated proton in the [(E)(CH3OH)(HZ)] complex with increasing PA. Importantly, this is also observed in steady-state flow reactions when stoichiometric quantities of E are preadsorbed on the zeolite. As demonstrated with E being D2O, the effect on methanol reactivity diminishes when E is present in excess of the [(E)(CH3OH)(HZ)] complex. It is proposed that the methanol dehydration reaction involves [(E)(CH3OH)(CH3OH)(HZ)] as the transition state, which is supported by the isotopologue distribution of the initial dimethyl ether formed when a flow of CH3OH was passed over ZSM-5 containing one CD3OH per zeolite proton. The implication of this on the mechanism of catalytic methanol dehydration on HZSM-5 is discussed.

2.
J Phys Chem B ; 127(51): 11054-11063, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38109274

ABSTRACT

Hydrogen bonding between water molecules and zeolite BroÌ·nsted acid sites (BAS) has received much attention due to the significant influence of water on the adsorption and catalytic properties of these widely used porous materials. When a single water molecule is adsorbed at the BAS, the zeolite O-H stretch vibration decreases in frequency and splits into two extraordinarily broad bands peaked near 2500 and 2900 cm-1 in the infrared (IR) spectrum. This broad doublet feature is the predominant IR signature used to identify and interpret water-BAS H-bonding at low hydration levels, but the origin of the band splitting is not well understood. In this study, we used broadband two-dimensional infrared (2D IR) spectroscopy to investigate zeolite HZSM-5 prepared with a single water molecule per BAS. We find that the 2D IR spectrum is not explained by the most common interpretation of Fermi resonance coupling between the stretch and the bend of the BAS OH group, which predicts intense excited-state transitions that are absent from the experimental results. We present an alternative model of a double-well proton stretch potential, where the band splitting is caused by excited-state tunneling through the proton-transfer barrier. This one-dimensional model reproduces the basic experimental pattern of transition frequencies and amplitudes, suggesting that the doublet bands may originate from a highly anharmonic potential in which the excited state proton wave functions are delocalized over the H-bond between zeolite BAS and adsorbed H2O. Additional details about molecular orientation and coordination of the adsorbed water molecule are also resolved in the 2D IR spectroscopy.

4.
J Am Chem Soc ; 144(22): 9576-9585, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35623060

ABSTRACT

Photocatalytic reduction of CO2 with light and H2O to form CH3OH is a promising route to mitigate carbon emissions and climate changes. Although semiconducting metal oxides are potential photocatalysts for this reaction, low photon efficiency and leaching of environmentally unfriendly toxic metals limit their applicability. Here, we report metal-free, core-shell photocatalysts consisting of graphitic carbon nitride (g-C3N4, CN) covalently linked to melamine-resorcinol-formaldehyde (MRF) microsphere polymers for this reaction. Covalent linkage enabled efficient separation of photo-generated carriers and photocatalysis. Using 100 mg of a photocatalyst containing 15 wt % CN, a CH3OH yield of 0.99 µmol·h-1 was achieved at a reaction temperature of 80 °C and 0.5 MPa with external quantum efficiencies ranging from 5.5% at 380 nm to 1.7% at 550 nm. The yield was about 20 and 10 times higher than that of its components CN and MRF, respectively. Characterization with X-ray photoelectron spectroscopy, transmission electron microscopy, and bulk and surface elemental analyses supported the formation of a core-shell structure and the charge transfer in the C-N bond at the CN-MRF interface between the methoxy group in the 2,4-dihydroxylmethyl-1,3-diphenol part of MRF and the terminal amino groups in CN. This enhanced ligand-to-ligand charge transfer resulted in 67% of the photo-excited internal charge transferred from CN to the hydroxymethylamino group in MRF, whose amino group was the catalytic site for the CO2 photocatalytic reduction to CH3OH. This study provides a series of new metal-free photocatalyst designs and insights into the molecular-level structure-mediated photocatalytic response.


Subject(s)
Carbon Dioxide , Methanol , Catalysis , Formaldehyde , Graphite , Ligands , Microspheres , Nitrogen Compounds , Polymers , Resorcinols , Triazines
5.
J Am Chem Soc ; 143(27): 10203-10213, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34210123

ABSTRACT

A molecular description of the structure and behavior of water confined in aluminosilicate zeolite pores is a crucial component for understanding zeolite acid chemistry under hydrous conditions. In this study, we use a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and ab initio molecular dynamics (AIMD) to study H2O confined in the pores of highly hydrated zeolite HZSM-5 (∼13 and ∼6 equivalents of H2O per Al atom). The 2D IR spectrum reveals correlations between the vibrations of both terminal and H-bonded O-H groups and the continuum absorption of the excess proton. These data are used to characterize the hydrogen-bonding network within the cluster by quantifying single-, double-, and non-hydrogen-bond donor water molecules. These results are found to be in good agreement with the statistics calculated from an AIMD simulation of an H+(H2O)8 cluster in HZSM-5. Furthermore, IR spectral assignments to local O-H environments are validated with DFT calculations on clusters drawn from AIMD simulations. The simulations reveal that the excess charge is detached from the zeolite and resides near the more highly coordinated water molecules in the cluster. When they are taken together, these results unambiguously assign the complex IR spectrum of highly hydrated HZSM-5, providing quantitative information on the molecular environments and hydrogen-bonding topology of protonated water clusters under extreme confinement.

6.
Chem Rev ; 121(15): 9450-9501, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34213328

ABSTRACT

The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.

7.
Sci Adv ; 6(5): eaax6637, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32064337

ABSTRACT

Traditionally, a catalyst functions by direct interaction with reactants. In a new noncontact catalytic system (NCCS), an intermediate produced by one catalytic reaction serves as an intermediary to enable an independent reaction to proceed. An example is the selective oxidation of ethylbenzene, which could not occur in the presence of either solubilized Au nanoclusters or cyclooctene, but proceeded readily when both were present simultaneously. The Au-initiated selective epoxidation of cyclooctene generated cyclooctenyl peroxy and oxy radicals that served as intermediaries to initiate the ethylbenzene oxidation. This combined system effectively extended the catalytic effect of Au. The reaction mechanism was supported by reaction kinetics and spin trap experiments. NCCS enables parallel reactions to proceed without the constraints of stoichiometric relationships, offering new degrees of freedom in industrial hydrocarbon co-oxidation processes.

9.
Nat Commun ; 8: 14881, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28348389

ABSTRACT

The ability of Au catalysts to effect the challenging task of utilizing molecular oxygen for the selective epoxidation of cyclooctene is fascinating. Although supported nanometre-size Au particles are poorly active, here we show that solubilized atomic Au clusters, present in ng ml-1 concentrations and stabilized by ligands derived from the oxidized hydrocarbon products, are active. They can be formed from various Au sources. They generate initiators and propagators to trigger the onset of the auto-oxidation reaction with an apparent turnover frequency of 440 s-1, and continue to generate additional initiators throughout the auto-oxidation cycle without direct participation in the cycle. Spectroscopic characterization suggests that 7-8 atom clusters are effective catalytically. Extension of work based on these understandings leads to the demonstration that these Au clusters are also effective in selective oxidation of cyclohexene, and that solubilized Pt clusters are also capable of generating initiators for cyclooctene epoxidation.

10.
J Am Chem Soc ; 138(13): 4294-7, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-26986621

ABSTRACT

Mild calcination in ozone of a (POSS)-Sn-(POSS) complex grafted on silica generated a heterogenized catalyst that mostly retained the tetrahedral coordination of its homogeneous precursor, as evidenced by spectroscopic characterizations using EXAFS, NMR, UV-vis, and DRIFT. The Sn centers are accessible and uniform and can be quantified by stoichiometric pyridine poisoning. This Sn-catalyst is active in hydride transfer reactions as a typical solid Lewis acid. However, the Sn centers can also create Brønsted acidity with alcohol by binding the alcohol strongly as alkoxide and transferring the hydroxyl H to the neighboring Sn-O-Si bond. The resulting acidic silanol is active in epoxide ring opening and acetalization reactions.

11.
Chemistry ; 22(13): 4454-9, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26879124

ABSTRACT

A unique hierarchically nanostructured composite of iron oxide/carbon (Fe3O4/C) nanospheres-doped three-dimensional (3D) graphene aerogel has been fabricated by a one-pot hydrothermal strategy. In this novel nanostructured composite aerogel, uniform Fe3O4 nanocrystals (5-10 nm) are individually embedded in carbon nanospheres (ca. 50 nm) forming a pomegranate-like structure. The carbon matrix suppresses the aggregation of Fe3O4 nanocrystals, avoids direct exposure of the encapsulated Fe3O4 to the electrolyte, and buffers the volume expansion. Meanwhile, the interconnected 3D graphene aerogel further serves to reinforce the structure of the Fe3O4/C nanospheres and enhances the electrical conductivity of the overall electrode. Therefore, the carbon matrix and the interconnected graphene network entrap the Fe3O4 nanocrystals such that their electrochemical function is retained even after fracture. This novel hierarchical aerogel structure delivers a long-term stability of 634 mA h g(-1) over 1000 cycles at a high current density of 6 A g(-1) (7 C), and an excellent rate capability of 413 mA h g(-1) at 10 A g(-1) (11 C), thus exhibiting great potential as an anode composite structure for durable high-rate lithium-ion batteries.

12.
Chem Commun (Camb) ; 50(99): 15699-701, 2014 Dec 25.
Article in English | MEDLINE | ID: mdl-25360661

ABSTRACT

A tetrahedral stannasilsesquioxane complex was synthesized as a racemic mixture using Sn(O(i)Pr)4 and silsesquioxanediol, and its structure was confirmed with X-ray crystallography, NMR, and EXAFS. The complex was a Lewis acid, and both anti and syn-binding with Lewis bases were possible with the formation of octahedral Sn complexes. It was also a Lewis acid catalyst active for epoxide ring opening and hydride transfer.

13.
ChemSusChem ; 7(9): 2545-53, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25049064

ABSTRACT

Free-standing N-doped graphene papers (NGP), generated by pyrolysis of polydiallyldimethylammonium chloride, were successfully used as binder-free electrodes for the state-of-the-art Li/polysulfide-catholyte batteries. They exhibited high specific capacities of approximately 1000 mA h g(-1) (based on S) after 100 cycles and coulombic efficiencies great than 98%, significantly better than undoped graphene paper (GP). These NGP were characterized with XRD, X-ray photoelectron spectroscopy, thermogravimetric analysis, AFM, electron microscopy, and Raman and impedance spectroscopy before and after cycling. Spectroscopic evidence suggested stronger binding of sulfide to NGP relative to GP, and modelling results from DFT calculation, substantiated with experimental data, indicated that pyrrolic and pyridinic N atoms interacted more strongly with Li polysulfides than quaternary N atoms. Thus, more favorable partition of polysulfides between the electrode and the electrolyte and the corresponding effect on the morphology of the passivation layer were the causes of the beneficial effect of N doping.


Subject(s)
Graphite/chemistry , Lithium/chemistry , Nitrogen/chemistry , Paper , Sulfides/chemistry , Electric Power Supplies , Electrodes , Models, Molecular , Molecular Conformation
14.
J Am Chem Soc ; 136(14): 5185-8, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24673361

ABSTRACT

A discrete nanocage of core-shell design, in which carboxylic acid groups were tethered to the core and silanol to the shell interior, was found to react with Co2(CO)8 to form and stabilize a Co(I)-CO species. The singular CO stretching band of this new Co species at 1958 cm(-1) and its magnetic susceptibility were consistent with Co(I) compounds. When exposed to O2, it transformed from an EPR inactive to an EPR active species indicative of oxidation of Co(I) to Co(II) with the formation of H2O2. It could be oxidized also by organoazide or water. Its residence in the nanocage interior was confirmed by size selectivity in the oxidation process and the fact that the entrapped Co species could not be accessed by an electrode.


Subject(s)
Carboxylic Acids/chemistry , Cobalt/chemistry , Silanes/chemistry , Carbon Monoxide/chemistry , Hydrogen Peroxide/chemical synthesis , Hydrogen Peroxide/chemistry , Molecular Structure , Oxygen/chemistry
15.
Chem Commun (Camb) ; 50(25): 3262-76, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24457538

ABSTRACT

Organosilicon compounds, in the form of cubic metallasiloxanes, cage-like silsesquioxanes, macromolecular nanocages, and flexible structures such as dendrimers and linear metallsiloxanes, have found useful applications as catalysts, ligands for metal complexes, and catalyst supports. Illustrative examples of these are presented. The well-defined structures of these compounds make them particularly suitable as molecular analogues of zeolites or silica-supported catalysts. A unique feature of many of these compounds is the presence of flexible siloxane bonds, which accommodate large fluctuations in the framework geometry, reminiscent of the adaptability of enzymes to conformational changes, and distinguish siloxane containing materials from carbon based synthetic materials. New preparative pathways and the use of the versatile silyl ester as a protection group have greatly expanded synthetic possibilities, pointing to the possibility of assembling these structures to form multifunctional catalytic structures. Some nanocage structures, with functionalities organized in close proximity, exhibit nanoconfinement effects.


Subject(s)
Organosilicon Compounds/chemistry , Carbon/chemistry , Catalysis , Oxygen/chemistry , Silicon/chemistry
16.
Chem Commun (Camb) ; 49(32): 3357-9, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23503304

ABSTRACT

Two novel spherosilicates comprised of an octahedral Si8O12 core, [Si8O12]-(OSiMe2CH2CH2CH2CH(COOH)2)8 and [Si8O12]-(OSiMe2CH2CH2CH2CH(COOSi(CH=CH2)3)2)8, were synthesized from [Si8O12]-(OSiMe2H)8. These new structures have high densities of peripheral functional groups, and the second structure also possesses silyl ester bonds that are easily cleavable under mild conditions. These functionalities enable these structures to be modified further and to have many potential applications. We demonstrated one by cross-linking the vinyl-terminated spherosilicate to form nanospheres with a narrow size distribution and utilizing the hydrophilic interior to accommodate a Pd salt in a toluene solution.

17.
Chem Commun (Camb) ; 48(81): 10096-8, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-22945251

ABSTRACT

Au nanoparticles decorated with mononuclear Ti-oxo units dispersed in silica clusters were formed by activating Au nanoparticles (~2 nm) stabilized with Ti- and amine-functionalized siloxane oligomers. These Au nanoparticles were active catalysts for selective oxidation of propane to acetone, and the activity increased with increasing Ti density.

18.
Chem Commun (Camb) ; 48(79): 9909-11, 2012 Oct 11.
Article in English | MEDLINE | ID: mdl-22935914

ABSTRACT

A facile route that combines co-assembly and photothermal reduction was developed to synthesize free-standing, flexible FeF(3)-graphene papers. The papers contain well-dispersed FeF(3) nanoparticles and open diffusion channels in a porous, electrically conducting network of graphene sheets, and demonstrate promising applications as cathodes in high-energy density Li-ion batteries.


Subject(s)
Ferric Compounds/chemistry , Fluorides/chemistry , Graphite/chemistry , Lithium/chemistry , Electric Power Supplies , Electrodes , Ions/chemistry , Kinetics , Metal Nanoparticles/chemistry , Paper
19.
Annu Rev Chem Biomol Eng ; 3: 445-71, 2012.
Article in English | MEDLINE | ID: mdl-22524506

ABSTRACT

The lithium-ion battery is the most promising battery candidate to power battery-electric vehicles. For these vehicles to be competitive with those powered by conventional internal combustion engines, significant improvements in battery performance are needed, especially in the energy density and power delivery capabilities. Recent discoveries and advances in the development of electrode materials to improve battery performance are summarized. Promising substitutes for graphite as the anode material include silicon, tin, germanium, their alloys, and various metal oxides that have much higher theoretical storage capacities and operate at slightly higher and safer potentials. Designs that attempt to accommodate strain owing to volumetric changes upon lithiation and delithiation are presented. All known cathode materials have storage capacities inferior to those of anode materials. In addition to variations on known transition metal oxides and phosphates, other potential materials, such as metal fluorides, are discussed as well as the effects of particle size and electrode architecture. New electrolyte systems and additives as well as their effects on battery performance, especially with regard to safety, are described.


Subject(s)
Alloys/chemistry , Electrochemistry , Germanium/chemistry , Lithium/chemistry , Silicon/chemistry , Tin/chemistry , Electric Power Supplies , Electricity , Electrodes , Electrolytes/chemistry , Oxides/chemistry , Phosphates/chemistry
20.
Science ; 335(6073): 1205-8, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22403386

ABSTRACT

We showed that alumina (Al(2)O(3)) overcoating of supported metal nanoparticles (NPs) effectively reduced deactivation by coking and sintering in high-temperature applications of heterogeneous catalysts. We overcoated palladium NPs with 45 layers of alumina through an atomic layer deposition (ALD) process that alternated exposures of the catalysts to trimethylaluminum and water at 200°C. When these catalysts were used for 1 hour in oxidative dehydrogenation of ethane to ethylene at 650°C, they were found by thermogravimetric analysis to contain less than 6% of the coke formed on the uncoated catalysts. Scanning transmission electron microscopy showed no visible morphology changes after reaction at 675°C for 28 hours. The yield of ethylene was improved on all ALD Al(2)O(3) overcoated Pd catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...