Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Public Health Surveill ; 8(4): e32411, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35377316

ABSTRACT

BACKGROUND: COVID-19 is an ongoing global pandemic caused by SARS-CoV-2. As of June 2021, 5 emergency vaccines were available for COVID-19 prevention, and with the improvement of vaccination rates and the resumption of activities in each country, verification of vaccination has become an important issue. Currently, in most areas, vaccination and reverse transcription polymerase chain reaction (RT-PCR) test results are certified and validated on paper. This leads to the problem of counterfeit documents. Therefore, a global vaccination record is needed. OBJECTIVE: The main objective of this study is to design a vaccine passport (VP) validation system based on a general blockchain architecture for international use in a simulated environment. With decentralized characteristics, the system is expected to have the advantages of low cost, high interoperability, effectiveness, security, and verifiability through blockchain architecture. METHODS: The blockchain decentralized mechanism was used to build an open and anticounterfeiting information platform for VPs. The contents of a vaccination card are recorded according to international Fast Healthcare Interoperability Resource (FHIR) standards, and blockchain smart contracts (SCs) are used for authorization and authentication to achieve hierarchical management of various international hospitals and people receiving injections. The blockchain stores an encrypted vaccination path managed by the user who manages the private key. The blockchain uses the proof-of-authority (PoA) public chain and can access all information through the specified chain. This will achieve the goal of keeping development costs low and streamlining vaccine transit management so that countries in different economies can use them. RESULTS: The openness of the blockchain helps to create transparency and data accuracy. This blockchain architecture contains a total of 3 entities. All approvals are published on Open Ledger. Smart certificates enable authorization and authentication, and encryption and decryption mechanisms guarantee data protection. This proof of concept demonstrates the design of blockchain architecture, which can achieve accurate global VP verification at an affordable price. In this study, an actual VP case was established and demonstrated. An open blockchain, an individually approved certification mechanism, and an international standard vaccination record were introduced. CONCLUSIONS: Blockchain architecture can be used to build a viable international VP authentication process with the advantages of low cost, high interoperability, effectiveness, security, and verifiability.


Subject(s)
Blockchain , COVID-19 , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Computer Security , Humans , SARS-CoV-2
2.
Comput Methods Programs Biomed ; 215: 106595, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34999532

ABSTRACT

BACKGROUND AND OBJECTIVE: COVID-19, a serious infectious disease outbreak started in the end of 2019, has caused a strong impact on the overall medical system, which reflects the gap in the volume and capacity of medical services and highlights the importance of clinical data ex-change and application. The most important concerns of medical records in the medical field include data privacy, data correctness, and data security. By realizing these three goals, medical records can be made available to different hospital information systems to achieve the most complete medical care services. The privacy and protection of health data require detailed specification and usage requirements, which is particularly important for cross-agency data exchange. METHODS: This research is composed of three main modules. "Combined Encryption and Decryption Architecture", which includes the hybrid double encryption mechanism of AES and RSA, and encrypts medical records to produce "Secured Encrypted Medical Record". "Decentralize EMR Repository", which includes data decryption and an exchange mechanism. After a data transmission is completed, the content verification and data decryption process will be launched to confirm the correctness of the data and obtain the data. A blockchain architecture is used to store the hash value of the encrypted EMR, and completes the correctness verification of the EMR after transmission through the hash value. RESULTS: The results of this study provide an efficient triple encryption mechanism for electronic medical records. SEMRES ensures the correctness of data through the non-repudiation feature of a blockchain open ledger, and complete integrated information security protection and data verification architecture, in order that medical data can be exchanged, verified, and applied in different locations. After the patient receives medical services, the medical record is re-encrypted and verified and stored in the patient's medical record. The blockchain architecture is used to ensure the verification of non-repudiation of medical service, and finally to complete the payment for medical services. CONCLUSIONS: The main aim of this study was to complete a security architecture for medical data, and develop a triple encryption authentication architecture to help data owners easily and securely share personal medical records with medical service personnel.


Subject(s)
Blockchain , COVID-19 , Health Records, Personal , Computer Security , Electronic Health Records , Humans , SARS-CoV-2
3.
JMIR Med Inform ; 8(12): e20567, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33320826

ABSTRACT

BACKGROUND: COVID-19 has affected more than 180 countries and is the first known pandemic to be caused by a new virus. COVID-19's emergence and rapid spread is a global public health and economic crisis. However, investigations into the disease, patient-tracking mechanisms, and case report transmissions are both labor-intensive and slow. OBJECTIVE: The pandemic has overwhelmed health care systems, forcing hospitals and medical facilities to find effective ways to share data. This study aims to design a global infectious disease surveillance and case tracking system that can facilitate the detection and control of COVID-19. METHODS: The International Patient Summary (IPS; an electronic health record that contains essential health care information about a patient) was used. The IPS was designed to support the used case scenario for unplanned cross-border care. The design, scope, utility, and potential for reuse of the IPS for unplanned cross-border care make it suitable for situations like COVID-19. The Fast Healthcare Interoperability Resources confirmed that IPS data, which includes symptoms, therapies, medications, and laboratory data, can be efficiently transferred and exchanged on the system for easy access by physicians. To protect privacy, patient data are deidentified. All systems are protected by blockchain architecture, including data encryption, validation, and exchange of records. RESULTS: To achieve worldwide COVID-19 surveillance, a global infectious disease information exchange must be enacted. The COVID-19 surveillance system was designed based on blockchain architecture. The IPS was used to exchange case study information among physicians. After being verified, physicians can upload IPS files and receive IPS data from other global cases. The system includes a daily IPS uploading and enhancement plan, which covers real-time uploading through the interoperation of the clinic system, with the module based on the Open Application Programming Interface architecture. Through the treatment of different cases, drug treatments, and the exchange of treatment results, the disease spread can be controlled, and treatment methods can be funded. In the Infectious Disease Case Tracking module, we can track the moving paths of infectious disease cases. The location information recorded in the blockchain is used to check the locations of different cases. The Case Tracking module was established for the Centers for Disease Control and Prevention to track cases and prevent disease spread. CONCLUSIONS: We created the IPS of infectious diseases for physicians treating patients with COVID-19. Our system can help health authorities respond quickly to the transmission and spread of unknown diseases, and provides a system for information retrieval on disease transmission. In addition, this system can help researchers form trials and analyze data from different countries. A common forum to facilitate the mutual sharing of experiences, best practices, therapies, useful medications, and clinical intervention outcomes from research in various countries could help control an unknown virus. This system could be an effective tool for global collaboration in evidence-based efforts to fight COVID-19.

4.
J Med Internet Res ; 22(6): e16748, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32515743

ABSTRACT

BACKGROUND: Personal health record (PHR) security, correctness, and protection are essential for health and medical services. Blockchain architecture can provide efficient data retrieval and security requirements. Exchangeable PHRs and the self-management of patient health can offer many benefits to traditional medical services by allowing people to manage their own health records for disease prevention, prediction, and control while reducing resource burdens on the health care infrastructure and improving population health and quality of life. OBJECTIVE: This study aimed to build a blockchain-based architecture for an international health record exchange platform to ensure health record confidentiality, integrity, and availability for health management and used Health Level 7 Fast Healthcare Interoperability Resource international standards as the data format that could allow international, cross-institutional, and patient/doctor exchanges of PHRs. METHODS: The PHR architecture in this study comprised 2 main components. The first component was the PHR management platform, on which users could upload PHRs, view their record content, authorize PHR exchanges with doctors or other medical health care providers, and check their block information. When a PHR was uploaded, the hash value of the PHR would be calculated by the SHA-256 algorithm and the PHR would be encrypted by the Rivest-Shamir-Adleman encryption mechanism before being transferred to a secure database. The second component was the blockchain exchange architecture, which was based on Ethereum to create a private chain. Proof of authority, which delivers transactions through a consensus mechanism based on identity, was used for consensus. The hash value was calculated based on the previous hash value, block content, and timestamp by a hash function. RESULTS: The PHR blockchain architecture constructed in this study is an effective method for the management and utilization of PHRs. The platform has been deployed in Southeast Asian countries via the Asia eHealth Information Network (AeHIN) and has become the first PHR management platform for cross-region medical data exchange. CONCLUSIONS: Some systems have shown that blockchain technology has great potential for electronic health record applications. This study combined different types of data storage modes to effectively solve the problems of PHR data security, storage, and transmission and proposed a hybrid blockchain and data security approach to enable effective international PHR exchange. By partnering with the AeHIN and making use of the network's regional reach and expert pool, the platform could be deployed and promoted successfully. In the future, the PHR platform could be utilized for the purpose of precision and individual medicine in a cross-country manner because of the platform's provision of a secure and efficient PHR sharing and management architecture, making it a reasonable base for future data collection sources and the data analytics needed for precision medicine.


Subject(s)
Blockchain/standards , Health Records, Personal/ethics , Information Storage and Retrieval/methods , Telemedicine/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...