Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 10(11)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469315

ABSTRACT

Dietary selenium (Se) intake is essential for synthesizing selenoproteins that are important in countering oxidative and inflammatory processes linked to colorectal carcinogenesis. However, there is limited knowledge on the selenoprotein expression in colorectal adenoma (CRA) and colorectal cancer (CRC) patients, or the interaction with Se status levels. We studied the expression of seventeen Se pathway genes (including fifteen of the twenty-five human selenoproteins) in RNA extracted from disease-normal colorectal tissue pairs, in the discovery phase of sixty-two CRA/CRC patients from Ireland and a validation cohort of a hundred and five CRC patients from the Czech Republic. Differences in transcript levels between the disease and paired control mucosa were assessed by the Mann-Whitney U-test. GPX2 and TXNRD3 showed a higher expression and GPX3, SELENOP, SELENOS, and SEPHS2 exhibited a lower expression in the disease tissue from adenomas and both cancer groups (p-values from 0.023 to <0.001). In the Czech cohort, up-regulation of GPX1, SELENOH, and SOD2 and down-regulation of SELENBP1, SELENON, and SELENOK (p-values 0.036 to <0.001) was also observed. We further examined the correlation of gene expression with serum Se status (assessed by Se and selenoprotein P, SELENOP) in the Irish patients. While there were no significant correlations with both Se status markers, SELENOF, SELENOK, and TXNRD1 tumor tissue expression positively correlated with Se, while TXNRD2 and TXNRD3 negatively correlated with SELENOP. In an analysis restricted to the larger Czech CRC patient cohort, Cox regression showed no major association of transcript levels with patient survival, except for an association of higher SELENOF gene expression with both a lower disease-free and overall survival. Several selenoproteins were differentially expressed in the disease tissue compared to the normal tissue of both CRA and CRC patients. Altered selenoprotein expression may serve as a marker of functional Se status and colorectal adenoma to cancer progression.


Subject(s)
Adenoma/genetics , Colorectal Neoplasms/genetics , Selenium/blood , Selenoproteins/genetics , Adenoma/blood , Aged , Aged, 80 and over , Cohort Studies , Colorectal Neoplasms/blood , Czech Republic , Female , Gene Expression Regulation , Genetic Markers , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Humans , Ireland , Male , Middle Aged , Proportional Hazards Models , Selenoprotein P/genetics , Selenoprotein P/metabolism , Selenoproteins/metabolism , Thioredoxin Reductase 1/genetics , Thioredoxin Reductase 1/metabolism , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism
2.
PLoS One ; 10(7): e0134463, 2015.
Article in English | MEDLINE | ID: mdl-26226484

ABSTRACT

Variations in the TP53 gene have been suggested to play a role in many cancers, including breast. We previously observed an association between TP53 haplotypes based on four polymorphisms (rs17878362, rs1042522, rs12947788, and rs17884306) and the risk of colorectal and pancreatic cancer. Based on these results, in the present study, we have investigated the same polymorphisms and their haplotypes in 705 breast cancer cases and 611 healthy controls in relation to the disease risk, histopathological features of the tumor and clinical outcomes. In comparison to the most common haplotype A1-G-C-G, all the other identified haplotypes were globally associated with a significantly decreased breast cancer risk (P = 0.006). In particular, the A2-G-C-G haplotype was associated with a marked decreased risk of breast cancer when compared with the common haplotype (P = 0.0001). Moreover, rs1042522 in patients carrying the GC genotype and receiving only the anthracycline-based chemotherapy was associated with both overall and disease-free survival (recessive model for overall survival HR = 0.30 95% CI 0.11-0.80, P = 0.02 and for disease-free survival HR = 0.42 95% CI 0.21-0.84, P = 0.01). Present results suggest common genetic features in the susceptibility to breast and gastrointestinal cancers in respect to TP53 variations. In fact, similar haplotype distributions were observed for breast, colorectal, and pancreatic patients in associations with cancer risk. Rs1042522 polymorphism (even after applying the Dunn-Bonferroni correction for multiple testing) appears to be an independent prognostic marker in breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Genes, p53/genetics , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes/genetics , Humans , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors
3.
PLoS One ; 9(7): e101740, 2014.
Article in English | MEDLINE | ID: mdl-25078270

ABSTRACT

OBJECTIVES: ATP-Binding Cassette (ABC) transporters may cause treatment failure by transporting of anticancer drugs outside of the tumor cells. Multidrug resistance-associated protein 1 coded by the ABCC1 gene has recently been suggested as a potential prognostic marker in breast cancer patients. This study aimed to explore tagged haplotype covering nucleotide binding domain 1 of ABCC1 in relation with corresponding transcript levels in tissues and clinical phenotype of breast cancer patients. METHODS: The distribution of twelve ABCC1 polymorphisms was assessed by direct sequencing in peripheral blood DNA (n = 540). RESULTS: Tumors from carriers of the wild type genotype in rs35623 or rs35628 exhibited significantly lower levels of ABCC1 transcript than those from carriers of the minor allele (p = 0.003 and p = 0.004, respectively). The ABCC1 transcript levels significantly increased in the order CT-GT>CC-GT>CC-GG for the predicted rs35626-rs4148351 diplotype. Chemotherapy-treated patients carrying the T allele in rs4148353 had longer disease-free survival than those with the GG genotype (p = 0.043). On the other hand, hormonal therapy-treated patients with the AA genotype in rs35628 had significantly longer disease-free survival than carriers of the G allele (p = 0.012). CONCLUSIONS: Taken together, our study shows that genetic variability in the nucleotide binding domain 1 has a significant impact on the ABCC1 transcript level in the target tissue and may modify survival of breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Multidrug Resistance-Associated Proteins/genetics , Polymorphism, Single Nucleotide , RNA, Messenger/genetics , Survival Analysis , Aged , Breast Neoplasms/physiopathology , Female , Humans , Middle Aged , Multidrug Resistance-Associated Proteins/metabolism
4.
Drug Metab Rev ; 46(3): 325-42, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24670052

ABSTRACT

Multidrug resistance presents one of the most important causes of cancer treatment failure. Numerous in vitro and in vivo data have made it clear that multidrug resistance is frequently caused by enhanced expression of ATP-binding cassette (ABC) transporters. ABC transporters are membrane-bound proteins involved in cellular defense mechanisms, namely, in outward transport of xenobiotics and physiological substrates. Their function thus prevents toxicity as carcinogenesis on one hand but may contribute to the resistance of tumor cells to a number of drugs including chemotherapeutics on the other. Within 48 members of the human ABC superfamily there are several multidrug resistance-associated transporters. Due to the well documented susceptibility of numerous drugs to efflux via ABC transporters it is highly desirable to assess the status of ABC transporters for individualization of treatment by their substrates. The multidrug resistance associated protein 1 (MRP1) encoded by ABCC1 gene is one of the most studied ABC transporters. Despite the fact that its structure and functions have already been explored in detail, there are significant gaps in knowledge which preclude clinical applications. Tissue-specific patterns of expression and broad genetic variability make ABCC1/MRP1 an optimal candidate for use as a marker or member of multi-marker panel for prediction of chemotherapy resistance. The purpose of this review was to summarize investigations about associations of gene and protein expression and genetic variability with prognosis and therapy outcome of major cancers. Major advances in the knowledge have been identified and future research directions are highlighted.


Subject(s)
Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Animals , Drug Resistance, Multiple/genetics , Drug Resistance, Neoplasm/genetics , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Prognosis , Xenobiotics/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...