Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 17: 1155102, 2023.
Article in English | MEDLINE | ID: mdl-37250697

ABSTRACT

Introduction: Tactile information processing requires the integration of sensory, motor, and cognitive information. Width discrimination has been extensively studied in rodents, but not in humans. Methods: Here, we describe Electroencephalography (EEG) signals in humans performing a tactile width discrimination task. The first goal of this study was to describe changes in neural activity occurring during the discrimination and the response periods. The second goal was to relate specific changes in neural activity to the performance in the task. Results: Comparison of changes in power between two different periods of the task, corresponding to the discrimination of the tactile stimulus and the motor response, revealed the engagement of an asymmetrical network associated with fronto-temporo-parieto-occipital electrodes and across multiple frequency bands. Analysis of ratios of higher [Ratio 1: (0.5-20 Hz)/(0.5-45 Hz)] or lower frequencies [Ratio 2: (0.5-4.5 Hz)/(0.5-9 Hz)], during the discrimination period revealed that activity recorded from frontal-parietal electrodes was correlated to tactile width discrimination performance between-subjects, independently of task difficulty. Meanwhile, the dynamics in parieto-occipital electrodes were correlated to the changes in performance within-subjects (i.e., between the first and the second blocks) independently of task difficulty. In addition, analysis of information transfer, using Granger causality, further demonstrated that improvements in performance between blocks were characterized by an overall reduction in information transfer to the ipsilateral parietal electrode (P4) and an increase in information transfer to the contralateral parietal electrode (P3). Discussion: The main finding of this study is that fronto-parietal electrodes encoded between-subjects' performances while parieto-occipital electrodes encoded within-subjects' performances, supporting the notion that tactile width discrimination processing is associated with a complex asymmetrical network involving fronto-parieto-occipital electrodes.

2.
Front Neural Circuits ; 17: 1293620, 2023.
Article in English | MEDLINE | ID: mdl-38186631

ABSTRACT

In vivo recordings in freely behaving animals are crucial to understand the neuronal circuit basis of behavior. Although current multi-channel silicon probes provide unparalleled sampling density, the study of interacting neuronal populations requires the implantation of multiple probes across different regions of the brain. Ideally, these probes should be independently adjustable, to maximize the yield, and recoverable, to mitigate costs. In this work, we describe the implementation of a miniaturized 3D-printed headgear system for chronic in vivo recordings in mice using independently movable silicon probes targeting multiple brain regions. We successfully demonstrated the performance of the headgear by simultaneously recording the neuronal activity in the prelimbic cortex and dorsal hippocampus. The system proved to be sturdy, ensuring high-quality stable recordings and permitted reuse of the silicon probes, with no observable interference in mouse innate behaviors.


Subject(s)
Brain , Silicon , Animals , Mice , Cerebral Cortex , Hippocampus
3.
J Vis Exp ; (151)2019 09 29.
Article in English | MEDLINE | ID: mdl-31609344

ABSTRACT

Marmosets (Callithrix jacchus) are small non-human primates that are gaining popularity in biomedical and preclinical research, including the neurosciences. Phylogenetically, these animals are much closer to humans than rodents. They also display complex behaviors, including a wide range of vocalizations and social interactions. Here, an effective stereotaxic neurosurgical procedure for implantation of recording electrode arrays in the common marmoset is described. This protocol also details the pre- and postoperative steps of animal care that are required to successfully perform such a surgery. Finally, this protocol shows an example of local field potential and spike activity recordings in a freely behaving marmoset 1 week after the surgical procedure. Overall, this method provides an opportunity to study the brain function in awake and freely behaving marmosets. The same protocol can be readily used by researchers working with other small primates. In addition, it can be easily modified to allow other studies requiring implants, such as stimulating electrodes, microinjections, implantation of optrodes or guide cannulas, or ablation of discrete tissue regions.


Subject(s)
Microelectrodes/standards , Neurosurgical Procedures/methods , Animals , Callithrix
4.
Sci Rep ; 9(1): 5105, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30911025

ABSTRACT

Processing of tactile sensory information in rodents is critically dependent on the communication between the primary somatosensory cortex (S1) and higher-order integrative cortical areas. Here, we have simultaneously characterized single-unit activity and local field potential (LFP) dynamics in the S1, primary visual cortex (V1), anterior cingulate cortex (ACC), posterior parietal cortex (PPC), while freely moving rats performed an active tactile discrimination task. Simultaneous single unit recordings from all these cortical regions revealed statistically significant neuronal firing rate modulations during all task phases (anticipatory, discrimination, response, and reward). Meanwhile, phase analysis of pairwise LFP recordings revealed the occurrence of long-range synchronization across the sampled fronto-parieto-occipital cortical areas during tactile sampling. Causal analysis of the same pairwise recorded LFPs demonstrated the occurrence of complex dynamic interactions between cortical areas throughout the fronto-parietal-occipital loop. These interactions changed significantly between cortical regions as a function of frequencies (i.e. beta, theta and gamma) and according to the different phases of the behavioral task. Overall, these findings indicate that active tactile discrimination by rats is characterized by much more widespread and dynamic complex interactions within the fronto-parieto-occipital cortex than previously anticipated.


Subject(s)
Gyrus Cinguli/metabolism , Occipital Lobe/metabolism , Animals , Electrophysiology , Gyrus Cinguli/physiology , Male , Multivariate Analysis , Occipital Lobe/physiology , Parietal Lobe/metabolism , Parietal Lobe/physiology , Rats , Somatosensory Cortex/metabolism , Somatosensory Cortex/physiology , Visual Cortex/metabolism , Visual Cortex/physiology
5.
Sci Rep ; 9(1): 20289, 2019 12 30.
Article in English | MEDLINE | ID: mdl-31889134

ABSTRACT

Stress responses are associated with elevations in corticosterone levels and, as a consequence, increases in glutamate in the central nervous system which can lead to neurological impairment. Ceftriaxone promotes glutamate transport and has been used to reduce glutamate toxicity, but so far it is not known whether ceftriaxone is able to reverse the effects of corticosterone administration. Here we describe the separate and combined effects of acute ceftriaxone and acute corticosterone administration in local field potentials (LFPs) recorded from the somatosensory cortex (S1) of anesthetized mice. For this, LFPs were recorded from groups of anesthetized mice injected with saline, corticosterone, ceftriaxone, or both. Comparison of global state maps, and their displacements, as measured by ratios of different frequency bands (Ratio 1: 0.5-20 Hz/0.5-45 Hz; and Ratio 2: 0.5-4.5 Hz/0.5-9 Hz) revealed distinct and opposite effects for corticosterone and for ceftriaxone. Corticosterone specifically increased the displacement in Ratio 2, while ceftriaxone decreased it; in addition, when both corticosterone and ceftriaxone were injected, Ratio 2 displacement values were again similar to those of the control group. The present results suggest that ceftriaxone and corticosterone modulate specific frequency bands in opposite directions and reveal a potential role for ceftriaxone in counteracting the effects of corticosterone.


Subject(s)
Anesthesia , Ceftriaxone/pharmacology , Corticosterone/administration & dosage , Somatosensory Cortex/drug effects , Synaptic Potentials/drug effects , Animals , Drug Interactions , Mice
6.
J Neurophysiol ; 114(3): 1652-76, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26180115

ABSTRACT

Tactile information processing in the rodent primary somatosensory cortex (S1) is layer specific and involves modulations from both thalamocortical and cortico-cortical loops. However, the extent to which these loops influence the dynamics of the primary somatosensory cortex while animals execute tactile discrimination remains largely unknown. Here, we describe neural dynamics of S1 layers across the multiple epochs defining a tactile discrimination task. We observed that neuronal ensembles within different layers of the S1 cortex exhibited significantly distinct neurophysiological properties, which constantly changed across the behavioral states that defined a tactile discrimination. Neural dynamics present in supragranular and granular layers generally matched the patterns observed in the ventral posterior medial nucleus of the thalamus (VPM), whereas the neural dynamics recorded from infragranular layers generally matched the patterns from the posterior nucleus of the thalamus (POM). Selective inactivation of contralateral S1 specifically switched infragranular neural dynamics from POM-like to those resembling VPM neurons. Meanwhile, ipsilateral M1 inactivation profoundly modulated the firing suppression observed in infragranular layers. This latter effect was counterbalanced by contralateral S1 block. Tactile stimulus encoding was layer specific and selectively affected by M1 or contralateral S1 inactivation. Lastly, causal information transfer occurred between all neurons in all S1 layers but was maximal from infragranular to the granular layer. These results suggest that tactile information processing in the S1 of awake behaving rodents is layer specific and state dependent and that its dynamics depend on the asynchronous convergence of modulations originating from ipsilateral M1 and contralateral S1.


Subject(s)
Discrimination, Psychological , Posterior Thalamic Nuclei/physiology , Somatosensory Cortex/physiology , Touch Perception , Animals , Female , Neurons/cytology , Posterior Thalamic Nuclei/cytology , Rats , Rats, Long-Evans , Somatosensory Cortex/cytology
7.
Sci Rep ; 3: 1319, 2013.
Article in English | MEDLINE | ID: mdl-23448946

ABSTRACT

A brain-to-brain interface (BTBI) enabled a real-time transfer of behaviorally meaningful sensorimotor information between the brains of two rats. In this BTBI, an "encoder" rat performed sensorimotor tasks that required it to select from two choices of tactile or visual stimuli. While the encoder rat performed the task, samples of its cortical activity were transmitted to matching cortical areas of a "decoder" rat using intracortical microstimulation (ICMS). The decoder rat learned to make similar behavioral selections, guided solely by the information provided by the encoder rat's brain. These results demonstrated that a complex system was formed by coupling the animals' brains, suggesting that BTBIs can enable dyads or networks of animal's brains to exchange, process, and store information and, hence, serve as the basis for studies of novel types of social interaction and for biological computing devices.


Subject(s)
Brain/physiology , Motor Cortex/physiology , Animals , Behavior, Animal/physiology , Electric Stimulation , Microelectrodes , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...