Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JBMR Plus ; 8(5): ziae034, 2024 May.
Article in English | MEDLINE | ID: mdl-38586475

ABSTRACT

Mutations in PLEKHM1 cause osteopetrosis in humans and rats. The germline and osteoclast conditional deletions of Plekhm1 gene in mice lead to defective osteoclast bone resorption and increased trabecular bone mass without overt abnormalities in other organs. As an adaptor protein, pleckstrin homology and RUN domain containing M1 (PLEKHM1) interacts with the key lysosome regulator small GTPase RAB7 via its C-terminal RUBICON homologous (RH) domain. In this study, we have conducted a structural-functional study of the PLEKHM1 RH domain and RAB7 interaction in osteoclasts in vitro. The single mutations of the key residues in the Plekhm1 RH predicted from the crystal structure of the RUBICON RH domain and RAB7 interface failed to disrupt the Plekhm1-Rab7 binding, lysosome trafficking, and bone resorption. The compound alanine mutations at Y949-R954 and L1011-I1018 regions decreased Plekhm1 protein stability and Rab7-binding, respectively, thereby attenuated lysosome trafficking and bone resorption in osteoclasts. In contrast, the compound alanine mutations at R1060-Q1068 region were dispensable for Rab7-binding and Plekhm1 function in osteoclasts. These results indicate that the regions spanning Y949-R954 and L1011-I1018 of Plekhm1 RH domain are functionally important for Plekhm1 in osteoclasts and offer the therapeutic targets for blocking bone resorption in treatment of osteoporosis and other metabolic bone diseases.

2.
Cell Rep Med ; 4(7): 101101, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37421947

ABSTRACT

Merkel cell carcinoma (MCC), a rare but aggressive skin cancer, remains a challenge in the era of precision medicine. Immune checkpoint inhibitors (ICIs), the only approved therapy for advanced MCC, are impeded by high primary and acquired resistance. Hence, we dissect transcriptomic heterogeneity at single-cell resolution in a panel of patient tumors, revealing phenotypic plasticity in a subset of treatment-naive MCC. The tumor cells in a "mesenchymal-like" state are endowed with an inflamed phenotype that portends a better ICI response. This observation is also validated in the largest whole transcriptomic dataset available from MCC patient tumors. In contrast, ICI-resistant tumors predominantly express neuroepithelial markers in a well-differentiated state with "immune-cold" landscape. Importantly, a subtle shift to "mesenchymal-like" state reverts copanlisib resistance in primary MCC cells, highlighting potential strategies in patient stratification for therapeutics to harness tumor cell plasticity, augment treatment efficacy, and avert resistance.


Subject(s)
Carcinoma, Merkel Cell , Skin Neoplasms , Humans , Carcinoma, Merkel Cell/drug therapy , Carcinoma, Merkel Cell/genetics , Carcinoma, Merkel Cell/pathology , Transcriptome/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Immunotherapy , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...