Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 137-140(1-12): 555-71, 2007 Apr.
Article in English | MEDLINE | ID: mdl-18478416

ABSTRACT

The thermal stability of recombinant green fluorescent protein (GFP) in sodium chloride (NaCl) solutions at different concentrations, pH, and temperatures was evaluated by assaying the loss of fluorescence intensity as a measure of denaturation. GFP, extracted from Escherichia coli cells by the three-phase partitioning method and purified through a butyl hydrophobic interaction chromatography (HIC) column, was diluted in water for injection (WFI) (pH 6.0-7.0) and in 10 mM buffer solutions (acetate, pH 5.0; phosphate, pH 7.0; and Tris-EDTA, pH 8.0) with 0.9-30% NaCl or without and incubated at 80-95 degrees C. The extent of protein denaturation was expressed as a percentage of the calculated decimal reduction time (D-value). In acetate buffer (pH 4.84+/-0.12), the mean D-values for 90% reduction in GFP fluorescence ranged from 2.3 to 3.6 min, independent of NaCl concentration and temperature. GFP thermal stability diluted in WFI (pH 5.94+/-0.60) was half that observed in phosphate buffer (pH 6.08+/-0.60); but in both systems, D-values decreased linearly with increasing NaCl concentration, with D-values (at 80 degrees C) ranging from 3.44, min (WFI) to 6.1 min (phosphate buffer), both with 30% NaCl. However, D-values in Tris-EDTA (pH 7.65+/-0.17) were directly dependent on the NaCl concentration and 5-10 times higher than D-values for GFP in WFI at 80 degrees C. GFP pH- and thermal stability can be easily monitored by the convenient measure of fluorescence intensity and potentially be used as an indicator to monitor that processing times and temperatures were attained.


Subject(s)
Escherichia coli/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Sodium Chloride/chemistry , Spectrometry, Fluorescence/methods , Escherichia coli/genetics , Hydrogen-Ion Concentration , Molecular Probe Techniques , Protein Denaturation , Recombinant Proteins/chemistry , Solutions , Temperature
2.
Appl Biochem Biotechnol ; 121-124: 501-27, 2005.
Article in English | MEDLINE | ID: mdl-15920259

ABSTRACT

The stability at room temperature (25 degrees C) of recombinant green fluorescent protein (GFPuv), expressed by Escherichia coli cells and isolated by three-phase partitioning extraction with hydrophobic interaction column, was studied. The GFPuv was diluted in buffered (each 10 mM: Tris-HCl, pH 8.0; phosphate, pH 6.0 and 7.0 and acetate, pH 5.0) and in unbuffered (water for injection [WFI]; pH 6.70 +/- 0.40) glucose solutions (from 1.5 to 50%). By assaying the loss of fluorescence intensity as a measure of denaturation, the stability of GFPuv in these solutions was evaluated relative to glucose concentration, pH, osmolarity, density, conductivity, and viscosity. The extent of protein denaturation (loss of fluorescence intensity) was expressed in decimal reduction time (D-value), the time required to reduce 90% of the initial fluorescence intensity of GFPuv. The D-value between 56 and 83 h of GFPuv at 1.5-15% glucose in WFI was equivalent to 20-30% glucose in a phosphate. The stability of GFPuv in 50% glucose was similar for all buffers studied and four times higher than in WFI. By the convenient measure of fluorescence intensity, GFPuv can be used as an indicator to report the extent of denaturation rates of other proteins in glucose solutions.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Glucose/chemistry , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/chemistry , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Spectrometry, Fluorescence/methods , Drug Stability , Glucose/analysis , Green Fluorescent Proteins/genetics , Hydrogen-Ion Concentration , Kinetics , Protein Denaturation , Recombinant Proteins/biosynthesis , Solutions , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...