Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(4): 046202, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36763432

ABSTRACT

Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS_{2}. We observe strong intravalley coupling between the B_{1s} exciton and A_{n>1} states. Our measurements indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and momentum. While this conservation is consistent with Coulomb exchange-driven valley depolarization, we do not observe a momentum or energy dependence to the depolarization rate as would be expected for the exchange-based mechanism.

2.
J Chem Phys ; 151(15): 154304, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31640364

ABSTRACT

The dynamics of iodide-uracil-water (I-·U·H2O) clusters following π-π* excitation of the nucleobase are probed using time-resolved photoelectron spectroscopy. Photoexcitation of this cluster at 4.77 eV results in electron transfer from the iodide moiety to the uracil, creating a valence-bound anion within the cross correlation of the pump and probe laser pulses. This species can decay by a number of channels, including autodetachment and dissociation to I- or larger anion fragments. Comparison of the energetics of the photoexcited cluster and its decay dynamics with those of the bare iodide-uracil (I-·U) complex provides a sensitive probe of the effects of microhydration on these species.


Subject(s)
Iodides/chemistry , Uracil/chemistry , Water/chemistry , Electrons , Iodides/radiation effects , Oxidation-Reduction , Photoelectron Spectroscopy , Ultraviolet Rays , Uracil/radiation effects
3.
Phys Chem Chem Phys ; 21(14): 7239-7255, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30855623

ABSTRACT

Iodide-nucleobase (I-·N) clusters studied by time-resolved photoelectron spectroscopy (TRPES) are an opportune model system for examining radiative damage of DNA induced by low-energy electrons. By initiating charge transfer from iodide to the nucleobase and following the dynamics of the resulting transient negative ions (TNIs) with femtosecond time resolution, TRPES provides a novel window into the chemistry triggered by the attachment of low-energy electrons to nucleobases. In this Perspective, we examine and compare the dynamics of electron attachment, autodetachment, and photodissociation in a variety of I-·N clusters, including iodide-uracil (I-·U), iodide-thymine (I-·T), iodide-uracil-water (I-·U·H2O), and iodide-adenine (I-·A), to develop a more unified representation of our understanding of nucleobase TNIs. The experiments probe whether dipole-bound or valence-bound TNIs are formed initially and the subsequent time evolution of these species. We also provide an outlook for forthcoming applications of TRPES to larger iodide-containing complexes to enable the further investigation of microhydration dynamics in nucleobases, as well as electron attachment and photodissociation in more complex nucleic acid constituents.


Subject(s)
Adenine/chemistry , Cytosine/chemistry , Iodides/chemistry , Thymine/chemistry , Uracil/chemistry , Electrons , Lasers , Photoelectron Spectroscopy , Photolysis , Quantum Theory
4.
J Chem Phys ; 149(8): 084301, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30193511

ABSTRACT

The dynamics of low energy electron attachment to monohydrated uracil are investigated using time-resolved photoelectron imaging to excite and probe iodide-uracil-water (I-·U·H2O) clusters. Upon photoexcitation of I-·U·H2O at 4.38 eV, near the measured cluster vertical detachment energy of 4.40 eV ± 0.05 eV, formation of both the dipole bound (DB) anion and valence bound (VB) anion of I-·U·H2O is observed and characterized using a probe photon energy of 1.58 eV. The measured binding energies for both anions are larger than those of the non-hydrated iodide-uracil (I-·U) counterparts, indicating that the presence of water stabilizes the transient negative ions. The VB anion exhibits a somewhat delayed 400 fs rise when compared to I-·U, suggesting that partial conversion of the DB anion to form the VB anion at early times is promoted by the water molecule. At a higher probe photon energy, 3.14 eV, I- re-formation is measured to be the major photodissociation channel. This product exhibits a bi-exponential rise; it is likely that the fast component arises from DB anion decay by internal conversion to the anion ground state followed by dissociation to I-, and the slow component arises from internal conversion of the VB anion.

5.
Phys Chem Chem Phys ; 18(48): 33226-33232, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27892572

ABSTRACT

Femtosecond time-resolved photoelectron spectroscopy is used to probe the decay channels of iodide-nitromethane (I-·CH3NO2) binary clusters photoexcited at 3.56 eV, near the vertical detachment energy (VDE) of the cluster. The production of I- is observed, and its photoelectron signal exhibits a mono-exponential rise time of 21 ± 1 ps. Previous work has shown that excitation near the VDE of the I-·CH3NO2 complex transfers an electron from iodide to form a dipole-bound state of CH3NO2- that rapidly converts to a valence bound (VB) anion. The long appearance time for the I- fragment suggests that the VB anion decays by back transfer of the excess electron to iodide, reforming the I-·CH3NO2 anion and resulting in evaporation of iodide. Comparison of the measured lifetime to that predicted by RRKM theory suggests that the dissociation rate is limited by intramolecular vibrational energy redistribution in the re-formed anion between the high frequency CH3NO2 vibrational modes and the much lower frequency intermolecular I-·CH3NO2 stretch and bends, the predominant modes involved in cluster dissociation to form I-. Evidence for a weak channel identified as HI + CH2NO2- is also observed.

6.
J Chem Phys ; 145(4): 044319, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27475373

ABSTRACT

Photofragment action spectroscopy and femtosecond time-resolved photoelectron imaging are utilized to probe the dissociation channels in iodide-uracil (I(-) ⋅ U) binary clusters upon photoexcitation. The photofragment action spectra show strong I(-) and weak [U-H](-) ion signal upon photoexcitation. The action spectra show two bands for I(-) and [U-H](-) production peaking around 4.0 and 4.8 eV. Time-resolved experiments measured the rate of I(-) production resulting from excitation of the two bands. At 4.03 eV and 4.72 eV, the photoelectron signal from I(-) exhibits rise times of 86 ± 7 ps and 36 ± 3 ps, respectively. Electronic structure calculations indicate that the lower energy band, which encompasses the vertical detachment energy (4.11 eV) of I(-)U, corresponds to excitation of a dipole-bound state of the complex, while the higher energy band is primarily a π-π(∗) excitation on the uracil moiety. Although the nature of the two excited states is very different, the long lifetimes for I(-) production suggest that this channel results from internal conversion to the I(-) ⋅ U ground state followed by evaporation of I(-). This hypothesis was tested by comparing the dissociation rates to Rice-Ramsperger-Kassel-Marcus calculations.

7.
Neuropsychopharmacology ; 41(3): 716-25, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26189451

ABSTRACT

Prenatal nicotine exposure (PNE) is linked to numerous psychiatric disorders including attention deficit hyperactivity disorder (ADHD). Current literature suggests that core deficits observed in ADHD reflect abnormal inhibitory control governed by the prefrontal cortex. Yet, it is unclear how neural activity in the medial prefrontal cortex (mPFC) is modulated during tasks that assess response inhibition or if these neural correlates, along with behavior, are affected by PNE. To address this issue, we recorded from single mPFC neurons in control and PNE rats as they performed a stop-signal task. We found that PNE rats were faster for all trial-types, made more premature responses, and were less likely to inhibit behavior on 'STOP' trials during which rats had to inhibit an already initiated response. Activity in mPFC was modulated by response direction and was positively correlated with accuracy and movement time in control but not PNE rats. Although the number of single neurons correlated with response direction was significantly reduced by PNE, neural activity observed on general STOP trials was largely unaffected. However, dramatic behavioral deficits on STOP trials immediately following non-conflicting (GO) trials in the PNE group appear to be mediated by the loss of conflict monitoring signals in mPFC. We conclude that prenatal nicotine exposure makes rats impulsive and disrupts firing of mPFC neurons that carry signals related to response direction and conflict monitoring.


Subject(s)
Executive Function/physiology , Neurons/physiology , Nicotine/toxicity , Nicotinic Agonists/toxicity , Prefrontal Cortex/physiopathology , Prenatal Exposure Delayed Effects , Action Potentials , Animals , Electrodes, Implanted , Executive Function/drug effects , Female , Inhibition, Psychological , Male , Motor Activity/drug effects , Motor Activity/physiology , Neurons/drug effects , Neuropsychological Tests , Prefrontal Cortex/drug effects , Prefrontal Cortex/growth & development , Pregnancy , Rats, Long-Evans
8.
J Chem Phys ; 143(10): 104308, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26374036

ABSTRACT

Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison with calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.


Subject(s)
Adenine/chemistry , Anions/chemistry , Iodides/chemistry , Electrons , Gases/chemistry , Models, Chemical , Molecular Structure , Photochemical Processes , Photons , Quantum Theory , Spectrum Analysis
9.
J Chem Phys ; 143(2): 024312, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26178110

ABSTRACT

The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I(-)T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I(-)T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I(-)T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.


Subject(s)
Electrons , Thymine/chemistry , Anions/chemistry , DNA/chemistry , Gases/chemistry , Photoelectron Spectroscopy , Quaternary Ammonium Compounds/chemistry , Uracil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...