Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(12): 13738-13745, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559931

ABSTRACT

Nanocrystalline titanium nitride (TiN) has been determined to be a promising alternative to noble metal palladium (Pd) for fabricating base membranes for the energy-efficient production of pure hydrogen. However, the mechanism of transport of hydrogen through a TiN membrane remains unclear. In this study, we established an atomistic model of the transport of grain boundary hydride ions through such a membrane. High-resolution transmission electron microscopy and X-ray reflectivity confirmed that a nanocrystalline TiN1.0 membrane with a (100) preferred growth orientation retained about 4 Å-wide interfacial spaces along its grain boundaries. First-principles calculations based on the density functional theory showed that these grain boundaries allowed the diffusion of interfacial hydride ion defects with very small activation barriers (<12 kJ mol-1). This was substantiated by the experiment. In addition, the narrow boundary produced a sieving effect, resulting in a selective H permeation. Both the experimental and theoretical results confirmed that the granular microstructures with the 4 Å-wide interlayer enabled the transition metal nitride to exhibit pronounced hydrogen permeability.

2.
ACS Appl Mater Interfaces ; 16(3): 3509-3519, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38225735

ABSTRACT

Not all encapsulation techniques are universally apt for every type of phase change material (PCM), highlighting the imperative for methodological precision. This study addresses the challenges of microencapsulated PCM (MEPCM) arising from the immiscible pairing of α-Al2O3 nanoparticles with Sn microparticles. The high-speed impact blending (HIB) dry synthesis technique is employed, facilitating large-volume production of Sn@α-Al2O3 MEPCMs. The resulting MEPCMs not only seamlessly endure 100 cycles of melting-solidification but also, with the strategic incorporation of a glass frit, exhibit remarkable thermal durability, withstanding up to 1000 melting-solidification cycles. Even under ultrafast thermal fluctuations, the α-Al2O3 shell remained resilient through 100 cycles. A marked reduction in supercooling is observed, which is attributed to the formation of SnO and SnO2 nanoparticles within the α-Al2O3 crystal lattice. The atomically resolved interface dynamics between SnO2 and α-Al2O3 play a pivotal role, lowering the energy barrier for Sn nuclei formation during solidification. This affects the accelerated Sn nucleation rate, effectively suppressing supercooling. Such insights offer a deeper understanding of the interplay between nanoscale crystal lattice imperfections and their implications for energy storage applications.

3.
ACS Omega ; 7(8): 7414-7420, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252731

ABSTRACT

Anisotropic growth to form Cu particles of rod and wire shapes has been obtained typically in a complex system that involves both organic capping agents and Cl- ions. However, the sole effect of Cl- ions on the formation of Cu wires has yet to be fully understood, especially in an organic system. This present work determines the effect of Cl- ions on the morphologies of Cu particles in an organic phase without any capping agents. The results revealed that anisotropic Cu rods could be grown with the sole presence of Cl- ions. The rods have the (011) facets as the long axis, the (111) facets as the tip, and the (100) facets as the side surface. By increasing the Cl- ion concentration, more Cu atoms contributed to the formation of Cu rods and the kinetic growth of the length and the diameter of the rods varied. This suggests that Cl- ions have preferential adsorption on the (100) Cu surfaces to promote the anisotropic growth of Cu. Meanwhile, the adsorption of Cl- to the (111) and (100) surfaces at high Cl- concentrations regulates the relative growth of the particle length and diameter.

4.
Sci Rep ; 11(1): 7539, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33824354

ABSTRACT

CO2 methanation is a promising technology to enable the use of CO2 as a resource. Thermal control of CO2 methanation, which is a highly active exothermic reaction, is important to avoid thermal runaway and subsequent degradation of the catalyst. Using the heat storage capacity of a phase change material (PCM) for thermal control of the reaction is a novel passive approach. In this study a novel structure was developed, wherein catalysts were directly loaded onto a micro-encapsulated PCM (MEPCM). The MEPCM was prepared in three steps consisting of a boehmite treatment, precipitation treatment, and heat oxidation treatment, and an impregnation process was adopted to prepare a Ni catalyst. The catalyst-loaded MEPCM did not show any breakage or deformation of the capsule or a decrease in the heat storage capacity after the impregnation treatment. MEPCM demonstrated a higher potential as an alternative catalyst support in CO2 methanation than the commercially available α-Al2O3 particle. In addition, the heat storage capacity of the catalyst-loaded MEPCM suppressed the temperature rise of the catalyst bed at a high heat absorption rate (2.5 MW m-3). In conclusion, the catalyst-loaded MEPCM is a high-speed, high-precision thermal control device because of its high-density energy storage and resolution of a spatial gap between the catalyst and cooling devices. This novel concept has the potential to overcome the technical challenges faced by efficiency enhancement of industrial chemical reactions.

5.
Sci Rep ; 10(1): 3462, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32103095

ABSTRACT

By tuning the physical and chemical pressures of layered perovskite materials we can realize the quantum states of both superconductors and insulators. By reducing the thickness of a layered crystal to a nanometer level, a nanofilm crystal can provide novel quantum states that have not previously been found in bulk crystals. Here we report the realization of high-temperature superconductivity in Ca2RuO4 nanofilm single crystals. Ca2RuO4 thin film with the highest transition temperature Tc (midpoint) of 64 K exhibits zero resistance in electric transport measurements. The superconducting critical current exhibited a logarithmic dependence on temperature and was enhanced by an external magnetic field. Magnetic measurements revealed a ferromagnetic transition at 180 K and diamagnetic magnetization due to superconductivity. Our results suggest the co-appearance of superconductivity and ferromagnetism in Ca2RuO4 nanofilm crystals. We also found that the induced bias current and the tuned film thickness caused a superconductor-insulator transition. The fabrication of micro-nanocrystals made of layered material enables us to discuss rich superconducting phenomena in ruthenates.

6.
Sci Technol Adv Mater ; 20(1): 805-812, 2019.
Article in English | MEDLINE | ID: mdl-31489053

ABSTRACT

A series of Rh-based intermetallic compounds supported on silica was prepared and tested in alkene hydrogenation at room temperature. H2 and D2 were used as the hydrogen sources and the kinetic isotope effect (KIE) in hydrogenation was studied. In styrene hydrogenation, the KIE values differed strongly depending on the intermetallic phase, and some intermetallic compounds with Sb and Pb exhibited remarkably high KIE values (>28). An extraordinarily high KIE value of 91, which has never been reported in catalytic reactions at room temperature, was observed particularly for RhPb2/SiO2. RhPb2/SiO2 also showed high KIE values in the hydrogenation of other unsaturated hydrocarbons such as phenylacetylene and cyclohexene. The density functional theory calculation focused on the surface diffusion of hydrogen suggested no contribution of the quantum tunneling effect to the high KIE values observed. A kinetic study revealed that the dissociative adsorption of H2 (D2) was the rate-determining step in the styrene hydrogenation over RhPb2/SiO2. We propose that the large KIE originates from the quantum tunneling occurring at the hydrogen adsorption process with the aid of the specific surface structure of the intermetallic compound and adsorbate alkene.

7.
ACS Omega ; 4(4): 6573-6584, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459787

ABSTRACT

We investigated the H and H2 adsorption effects on the stability of a Pt atom on various heteroatom-doped graphene supports using first-principles calculations based on density functional theory. We show that H and H2 adsorptions on the Pt atom weaken the interaction between the Pt atom and graphene support and decrease the adsorption energy of Pt atoms. H2 adsorption on Pt atoms decreases the adsorption energy of Pt atoms on all graphene supports by more than 30%, whereas H adsorption only affects pristine, O-, and S-doped graphene. These results indicate that the hydrogen atmosphere enhances the detachment of Pt catalysts. However, the B-, O-, Si-, P-doped, and monovacant graphene still maintained large adsorption energies of PtH and PtH2 of more than 1.5 eV. In addition, the diffusion barriers of PtH and PtH2 on pristine graphene were calculated to be less than 0.07 eV, which further demonstrated that H and H2 enhance the degradation of Pt catalysts. Even after H and H2 adsorptions on a Pt atom, O-, Si-, P-doped, and monovacant graphene still maintained large diffusion barriers of more than 1 eV. Therefore, we concluded that O-, Si-, and P-doped graphene are suitable supports for Pt catalysts in a hydrogen atmosphere.

8.
Chemphyschem ; 20(10): 1369-1375, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30681760

ABSTRACT

The absorption states of hydrogen isotopes in various ceramic materials were investigated by density functional theory. For pristine ceramic materials, main-group oxides do not form any bond with a hydrogen atom. However, transition metal oxides form hydroxyl groups and absorb hydrogen atoms. Main-group and transition metal nitrides form ionic bonds between a hydrogen atom and the surrounded cation. For anion-deficient ceramic materials, hydrogen atoms are negatively charged because of excess electrons induced by anion vacancies, and ionic bonds form with the surrounded cation, which stabilizes the hydrogen absorption state. N substitutional doping into oxides introduces an electron hole, while O substitutional doping into the nitrides introduces an excess of electrons. Therefore, hydrogen isotopes form covalent bonds in N-substituted oxides, and form hydride ions in O-substituted nitrides. Thus, Al2 O3 , SiO2 , CrN, and TiN are promising materials as hydrogen permeation barriers.


Subject(s)
Anions/chemistry , Ceramics/chemistry , Hydrogen/chemistry , Oxides/chemistry , Adsorption , Aluminum Silicates/chemistry , Chromium/chemistry , Electrons , Models, Molecular , Permeability , Quantum Theory , Silicon Dioxide/chemistry , Titanium/chemistry
9.
Ultramicroscopy ; 175: 97-104, 2017 04.
Article in English | MEDLINE | ID: mdl-28183006

ABSTRACT

Three-dimensional (3D) distributional analysis of individual dopant atoms in materials is important to development of optical, electronic, and magnetic materials. In this study, we adopted through-focus high-angle annular dark-field (HAADF) imaging for 3D distributional analysis of Eu dopant atoms in Ca-α-SiAlON phosphors. In this context, the effects of convergence semi-angle and Eu z-position on the HAADF image contrast were investigated. Multi-slice image simulation revealed that the contrast of the dopant site was sensitive to change of the defocus level. When the defocus level matched the depth position of a Eu atom, the contrast intensity was significantly increased. The large convergence semi-angle greatly increased the depth resolution because the electron beam tends spread instead of channeling along the atomic columns. Through-focus HAADF-STEM imaging was used to analyze the Eu atom distribution surrounding 10nm cubes with defocus steps of 0.68nm each. The contrast depth profile recorded with a narrow step width clearly analyzed the possible depth positions of Eu atoms. The radial distribution function obtained for the Eu dopants was analyzed using an atomic distribution model that was based on the assumption of random distribution. The result suggested that the Ca concentration did not affect the Eu distribution. The decreased fraction of neighboring Eu atoms along z-direction might be caused by the enhanced short-range Coulomb-like repulsive forces along the z-direction.

10.
Ultramicroscopy ; 169: 37-43, 2016 10.
Article in English | MEDLINE | ID: mdl-27448199

ABSTRACT

The dielectric function of α-Al2O3 was measured by electron energy-loss spectroscopy (EELS) coupled with the difference method. The influence of Cerenkov radiation was significant in measurements using a 200kV transmission electron microscope (TEM) and the correct dielectric function could not be obtained using the conventional EELS procedure. However, a good agreement between the optical data and EELS for the dielectric functions was obtained via a 60kV TEM. Combining EELS and the difference method, however, provided an accurate measurement of the dielectric function for α-Al2O3 even at an accelerating voltage of 200kV. The combination of EELS and the difference method in the nano-beam diffraction mode could derive an accurate dielectric function with superior spatial resolution regardless of the occurrence of Cerenkov radiation.

11.
Microscopy (Oxf) ; 65(5): 415-421, 2016 10.
Article in English | MEDLINE | ID: mdl-27385785

ABSTRACT

We investigated an improved Kramers-Kronig analysis (KKA) routine for measuring the dielectric function of α-Al2O3, avoiding the retardation effect arising in electron energy-loss spectroscopy (EELS). The EELS data differed from the optical data in the energy range of 10-20 eV due to the retardation effect, even though Cerenkov loss was thoroughly suppressed. The calculated differential cross-section indicates that the influence of the retardation appears at scattering angles less than 0.2 mrad in the loss energy range of 10-15 eV. Using the improved KKA routine, we obtained the correct dielectric function that agreed with the optical data. The present technique is especially useful in measuring the dielectric function by EELS with a small collection semi-angle.

12.
Microscopy (Oxf) ; 65(5): 400-406, 2016 10.
Article in English | MEDLINE | ID: mdl-27334599

ABSTRACT

We investigated the dopant distribution in Ca-doped α-SiAlON by using high-angle annular dark-field scanning transmission electron microscopy and a multi-slice image simulation. Our results showed that the electron wave propagated by hopping to adjacent Si(Al) and N(O) columns. The image intensities of the Ca columns had wider dispersions than other columns. To estimate the Ca distribution in the bulk material, we performed a Monte Carlo atomic simulation of the α-SiAlON with Ca dopants. A model including a short-range Coulomb-like repulsive force between adjacent Ca atoms reproduced the dispersion of the intensity distribution of the Ca column in the experimental image.

13.
Microscopy (Oxf) ; 63(6): 463-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25332437

ABSTRACT

We investigated the stability of Pd/ZnO polar interfaces formed by internal oxidation of Pd-Zn alloys by using high-resolution transmission electron microscopy, electron energy-loss spectroscopy and convergent-beam electron diffraction. At 1273 K, a [Formula: see text] polar interface defaceted and transformed into a curved interface, while another (111)Pd/(0002)ZnO polar interface retained its flatness. The [Formula: see text] polar interface lost some stability over non-polar interfaces at 1273 K, while the (111)Pd/(0002)ZnO polar interface remained stable.

SELECTION OF CITATIONS
SEARCH DETAIL
...