Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 13(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38534645

ABSTRACT

Listeria monocytogenes is a foodborne pathogen that contaminates food-processing environments and persists within biofilms on equipment, thus reaching final products by cross-contamination. With the growing demand for clean-label products, the search for natural antimicrobials as biopreservants, such as bacteriocins, has shown promising potential. In this context, this study aimed to evaluate the anti-listerial action of bacteriocins produced by Enterococcus lactis LBM BT2 in an alternative medium containing sugarcane molasses (SCM). Molecular analyses were carried out to characterize the strain, including the presence of bacteriocin-related genes. In the kinetic study on SCM medium E. lactis, LBM BT2 showed biomass and bacteriocin productions similar to those observed on a sucrose-based medium (control), highlighting the potential of the sugarcane molasses as a low-cost substrate. Stability tests revealed that the molecule remained active in wide ranges of pH (4-10) and temperature (60-100 °C). Furthermore, the proteolytic treatment reduced the biomolecule's antimicrobial activity, highlighting its proteinaceous nature. After primary purification by salting out and tangential flow filtration, the bacteriocin-like inhibitory substance (BLIS) showed bacteriostatic activity on suspended L. monocytogenes cells and against biofilm formation at a concentration of 0.625 mg/mL. These results demonstrate the potential of the produced BLIS as a biopreservative in the food industry.

2.
Bioresour Technol ; 338: 125565, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34315131

ABSTRACT

Listeria monocytogenes is one of the foodborne pathogens of most concern for food safety. To limit its presence in foods, bacteriocins have been proposed as natural bio-preservatives. Herein, a bacteriocin was produced on hemicellulose hydrolysate of sugarcane bagasse by Pediococcus pentosaceous ET34, whose genome sequencing revealed an operon with 100% similarity to that of pediocin PA-1. ET34 grown on hydrolysate-containing medium led to an increase in the expression of PA-1 genes and a non-optimized purification step sequence resulted in a yield of 0.8 mg·L-1 of pure pediocin (purity > 95%). Culture conditions were optimized according to a central composite design using temperature and hydrolysate % as independent variables and validated in 3-L Erlenmeyers. Finally, a process for scaled-up implementation by sugar-ethanol industry was proposed, considering green chemistry and biorefinery concepts. This work stands up as an approach addressing a future proper sugarcane bagasse valorisation for pediocin production.


Subject(s)
Bacteriocins , Saccharum , Cellulose , Pediocins , Pediococcus , Pediococcus pentosaceus , Polysaccharides
3.
Biotechnol Adv ; 35(3): 361-374, 2017.
Article in English | MEDLINE | ID: mdl-28284993

ABSTRACT

Probiotics have gained increasing attention due to several health benefits related to the human digestive and immune systems. Pediococcus spp. are lactic acid bacteria (LAB) that are widely described as probiotics and characterized as coccus-shaped bacteria (arranged in tetrads), Gram-positive, non-motile, non-spore forming, catalase-negative, and facultative anaerobes. There are many Pediococcus strains that produce pediocin, an effective antilisterial bacteriocin. Pediocins are small, cationic molecules consisting of a conserved hydrophilic N-terminal portion containing the YGNGV motif and an amphiphilic or hydrophobic C-terminal variable portion. A number of studies have been developed with Pediococcus isolated from multiple biological niches to conduct fermentation processes for pediocin or Pediococcus cell production. This review gathers the most significant information about the cultivation, mode of action, and variability of bacteriocins produced by Pediococcus spp., emphasizing their applications in the areas of food and clinical practice. This updated panorama assists in delimiting the challenges that still need to be overcome for pediocin use to be approved for human consumption and the food industry.


Subject(s)
Pediocins , Pediococcus , Fermentation , Food Microbiology , Probiotics
SELECTION OF CITATIONS
SEARCH DETAIL
...