Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 846: 146868, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36075329

ABSTRACT

Lignocellulosic biomass is a rich source of feed for cattle. Amongst them, coconut coir may be the potential source of feed supplements. To assess, the effect of various concentrations of coconut coir (0 %, 21 % and 40 %) as a feed supplement on the rumen microbiome of cattle (Kankrej breed), a metagenomic (16S rRNA gene amplicon and shotgun sequencing) study was performed. The Alpha diversity estimation from the amplicon study suggested that the group of cattle fed food without the coconut coir has a higher number of genera than the cattle fed with mixed ration. Within the liquid fraction, bacterial phyla Bacteroidetes were abundant followed by Firmicutes and Fibrobacteres, whereas the proportion of Tenericutes, TM7, SRI, Verrucomicrobia, Lentisphaerae, and Elusimicrobia had decreased with the rise in the coir concentration. While within the solid fractions, the proportion of Elusimicrobia increased, but the count of Bacteriodetes, Firmicutes, Fibrobacteres Tenericutes, TM7, SRI, Verrucomicrobia, and Lentisphaerae decreased with an increase in coir percentages. The results obtained from shotgun sequencing show similar results for bacterial diversity. The functions associated with carbohydrate metabolism were abundant in both the treatments as compared to the control. Functions related to glycoside hydrolases, glycosyltransferases and carbohydrate-binding modules were abundant in both the treatments as compared to control. Thus, the study indicates that the microbiome does alter after feeding coir as a supplement and may be used as feed for cattle.


Subject(s)
Lignin , Rumen , Animal Feed , Animals , Bacteria , Carbohydrates , Cattle , Diet , Glycoside Hydrolases , Glycosyltransferases , Lignin/analogs & derivatives , Plant Breeding , RNA, Ribosomal, 16S/genetics
2.
Anaerobe ; 73: 102508, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34974183

ABSTRACT

Coconut coir (a lignin-rich, organic material) is widely used for its commercial and economic benefits. In this study, crossbred (exotic) and Kankrej (indigenous) breeds of cattle were fed diets containing 7 or 14% coconut coir. Metagenomic analyses (16S rRNA gene amplicon and shotgun sequencing) were used to characterize the microbial community in the rumen and fecal samples along with their functional capabilities. Both amplicon and shotgun analyses revealed the predominance of bacterial phyla, Bacteroidetes, Firmicutes, Actinobacteria and Fibrobacter in ruminal liquid, ruminal solid and fecal samples. 16S rRNA gene amplicon sequencing revealed a total of 18 different bacterial taxa were found to be enriched exclusively in the animals fed with 14% coir. The shotgun analysis revealed abundance of bacterial genera, Fibrobacter, Clostridium, Prevotella, Butyrivibrio, and Ruminococcus in both liquid and solid fractions of ruminal contents, while in the fecal sample, Bacteroides, Alistipes, Plaudibacter, Parabacteroides, Porphyromonas, and Victivallis and archaeal genus, Methanocorpusculum were abundant. The functional analysis based on dbCAN database suggested that among the Glycoside hydrolase family, genes that encode oligosaccharide degrading enzymes, GH3, GH13 (p-value < 0.05), and GH43 were abundant in the feces. In ruminal solid, cellulase encoding the GH5 family was abundant. Also, lignocellulosic binding modules encoded by the CBM family, including cellulose (CBM3) and hemicellulose binding modules (CBM32 and CBM67) were abundant. Thus, the study indicated the enrichment of lignocellulosic enzymes in ruminal contents in response to feeding the coconut coir, which could be mined for potential biofuel production and other biotechnological applications.


Subject(s)
Metagenome , Rumen , Animals , Cattle , Diet/veterinary , Feces , Lignin , RNA, Ribosomal, 16S/genetics , Rumen/microbiology
3.
Sci Rep ; 7(1): 7804, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798374

ABSTRACT

Breastfeeding undoubtedly provides important benefits to the mother-infant dyad and should be encouraged. Mastitis, one of the common but major cause of premature weaning among lactating women, is an inflammation of connective tissue within the mammary gland. This study reports the influence of mastitis on human milk microbiota by utilizing 16 S rRNA gene sequencing approach. We sampled and sequenced microbiome from 50 human milk samples, including 16 subacute mastitis (SAM), 16 acute mastitis (AM) and 18 healthy-controls. Compared to controls, SAM and AM microbiota were quite distinct and drastically reduced. Genera including, Aeromonas, Staphylococcus, Ralstonia, Klebsiella, Serratia, Enterococcus and Pseudomonas were significantly enriched in SAM and AM samples, while Acinetobacter, Ruminococcus, Clostridium, Faecalibacterium and Eubacterium were consistently depleted. Further analysis of our samples revealed positive aerotolerant odds ratio, indicating dramatic depletion of obligate anaerobes and enrichment of aerotolerant bacteria during the course of mastitis. In addition, predicted functional metagenomics identified several gene pathways related to bacterial proliferation and colonization (e.g. two-component system, bacterial secretion system and motility proteins) in SAM and AM samples. In conclusion, our study confirmed previous hypothesis that mastitis women have lower microbial diversity, increased abundance of opportunistic pathogens and depletion of commensal obligate anaerobes.


Subject(s)
Bacteria/classification , Mastitis/microbiology , Metagenomics/methods , Milk, Human/microbiology , Sequence Analysis, DNA/methods , Bacteria/genetics , Case-Control Studies , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Female , Gene Regulatory Networks , Humans , Lactation , Microbiota , Odds Ratio , Phylogeny , RNA, Ribosomal, 16S/genetics
4.
Sci Pharm ; 79(2): 293-308, 2011.
Article in English | MEDLINE | ID: mdl-21773067

ABSTRACT

Sulfonamide substituted 8-hydroxyquinoline derivatives were prepared using a microwave synthesizer. The interaction of sulfonamide substituted 8-hydroxyquinoline derivatives and their transition metal complexes with Plasmid (pUC 19) DNA and Calf Thymus DNA were investigated by UV spectroscopic studies and gel electrophoresis measurements. The interaction between ligand/metal complexes and DNA was carried out by increasing the concentration of DNA from 0 to 12 µl in UV spectroscopic study, while the concentration of DNA in gel electrophoresis remained constant at 10 µl. These studies supported the fact that, the complex binds to DNA by intercalation via ligand into the base pairs of DNA. The relative binding efficacy of the complexes to DNA was much higher than the binding efficacy of ligands, especially the complex of Cu-AHQMBSH had the highest binding ability to DNA. The mobility of the bands decreased as the concentration of the complex was increased, indicating that there was increase in the interaction between the metal ion and DNA. Complexes of AHQMBSH were excellent for DNA binding as compared to HQMABS.

SELECTION OF CITATIONS
SEARCH DETAIL
...