Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Carcinogenesis ; 25(5): 681-92, 2004 May.
Article in English | MEDLINE | ID: mdl-14729586

ABSTRACT

The development of apoptosis resistance appears to be an important factor in colon carcinogenesis. To gain an understanding of the molecular pathways altered during the development of apoptosis resistance, we selected three cell lines for resistance to induction of apoptosis by deoxycholate, an important etiologic agent in colon cancer. We then evaluated gene expression levels for 825 proteins in these resistant lines, compared with a parallel control line not subject to selection. Eighty-two proteins were identified as either over-expressed or under-expressed in at least two of the resistant lines, compared with the control. Thirty-five of the 82 proteins (43%) proved to have a known role in apoptosis. Of these 35 proteins, 21 were over-expressed and 14 were under-expressed. Of those that were over-expressed 18 of 21 (86%) are anti-apoptotic in some circumstances, of those that were under-expressed 11 of 14 (79%) are pro-apoptotic in some circumstances. This finding suggests that apoptosis resistance during selection among cultured cells, and possibly in the colon during progression to cancer, may arise by constitutive over-expression of multiple anti-apoptotic proteins and under-expression of multiple pro-apoptotic proteins. The major functional groups in which altered expression levels were found are post-translational modification (19 proteins), cell structure (cytoskeleton, microtubule, actin, etc.) (17 proteins), regulatory processes (11 proteins) and DNA repair and cell cycle checkpoint mechanisms (10 proteins). Our findings, overall, bear on mechanisms by which apoptosis resistance arises during progression to colon cancer and suggest potential targets for cancer treatment. In addition, assays of normal-appearing mucosa of colon cancer patients, for over- or under-expression of genes found to be altered in our resistant cell lines, may allow identification of early biomarkers of colon cancer risk.


Subject(s)
Apoptosis/drug effects , Colonic Neoplasms/pathology , Deoxycholic Acid/pharmacology , Detergents/pharmacology , Drug Resistance, Neoplasm , Neoplasm Proteins/metabolism , Bile Acids and Salts/metabolism , Colonic Neoplasms/metabolism , Humans , Proteomics , Tumor Cells, Cultured
2.
Nutr Cancer ; 46(1): 82-92, 2003.
Article in English | MEDLINE | ID: mdl-12925308

ABSTRACT

Deoxycholate, a bile salt present at high levels in the colonic lumen of individuals on a high-fat diet, is a promoter of colon cancer. Deoxycholate also causes DNA damage. BRCA-1 functions in repair of DNA and in induction of apoptosis. We show that, when cultured cells of colonic origin are exposed to deoxycholate at different concentrations, BRCA-1 expression is induced at a low noncytotoxic concentration (10 microM) but is strongly inhibited at higher cytotoxic concentrations ( > or =100 microM). Indication of phosphorylation of BRCA-1 by deoxycholate (100 microM) at a lower dose was seen by Western blot analysis, whereas, at a higher dose, deoxycholate (200 and 300 microM) caused a complete loss of BRCA-1 expression. We show that BRCA-1 is substantially lower in colon adenocarcinomas from five patients compared with associated non-neoplastic colon tissue from the same patients, suggesting that the loss of BRCA-1 expression contributes to the malignant phenotype. In the non-neoplastic colon tissue, BRCA-1 was localized to the nongoblet cells. Our results imply that reduced expression of BRCA-1 may be associated with carcinoma of the colon.


Subject(s)
Adenocarcinoma/genetics , Apoptosis/drug effects , Colonic Neoplasms/genetics , DNA Damage , Deoxycholic Acid/pharmacology , Gene Expression/drug effects , Genes, BRCA1/drug effects , Adenocarcinoma/pathology , Adult , Aged , Blotting, Western , Carcinogens/pharmacology , Cell Survival/drug effects , Colonic Neoplasms/pathology , Detergents/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Tumor Cells, Cultured
3.
Cancer Lett ; 177(2): 129-44, 2002 Mar 28.
Article in English | MEDLINE | ID: mdl-11825660

ABSTRACT

Bile acids are promoters of colon cancer; however, the mechanism(s) of action of this tumor promoter are largely unknown. Bile acids induce apoptosis in colon epithelial cells and it is probable that the modulation of apoptosis contributes, in part, to colon carcinogenesis. We tested the hypothesis that damage to mitochondria is an upstream event in sodium deoxycholate (NaDOC)-induced apoptosis and that a pro-oxidant state of the cell favors survival. NaDOC-induced damage to mitochondria was assessed by a decrease in mitochondrial membrane potential using flow cytometry and an increase in megamitochondria formation using transmission electron microscopy. We found that inhibition of mitochondrial complexes I and II with rotenone and thenoyltrifluoroacetone, respectively, dramatically protected HT-29 cells against NaDOC-induced apoptosis. Antioxidants (e.g. lazaroids U-74389G and U-8389G), however, sensitized cells to NaDOC-induced apoptosis, in spite of a reduction in reactive oxygen/nitrogen species. Lazaroid pre-treatment caused a marked decrease in NaDOC-induced activation of the anti-apoptotic transcription factor, NF-kappaB, which may provide the basis for the sensitization to apoptosis caused by these antioxidants. Inhibitors of arachidonic acid metabolism (e.g. esculetin, sulindac sulfide, NS-398) also sensitized HT-29 cells to NaDOC-induced apoptosis. These results indicate that the life/death decision is the result of a shift in the balance between specific anti-apoptotic and pro-apoptotic factors, respectively, that may have significance to colon carcinogenesis.


Subject(s)
Apoptosis , Arachidonic Acid/metabolism , Deoxycholic Acid/pharmacology , Mitochondria/metabolism , NADH, NADPH Oxidoreductases/metabolism , Reactive Oxygen Species/metabolism , Succinate Dehydrogenase/metabolism , Antioxidants/pharmacology , Apoptosis/drug effects , Apoptosis/physiology , Chromans/pharmacology , Humans , Piperazines/pharmacology , Pregnatrienes/pharmacology , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...