Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Zool A Ecol Integr Physiol ; 333(8): 550-560, 2020 10.
Article in English | MEDLINE | ID: mdl-32798281

ABSTRACT

The developing brain is highly sensitive to the hormonal milieu, with gonadal steroid hormones involved in neurogenesis, neural survival, and brain organization. Limited available evidence suggests that endocrine-disrupting chemicals (EDCs) may perturb these developmental processes. In this study, we tested the hypothesis that prenatal exposure to a mixture of polychlorinated biphenyls (PCBs), Aroclor 1221, would disrupt the normal timing of neurogenesis in two hypothalamic regions: the ventromedial nucleus (VMN) and the preoptic area (POA). These regions were selected because of their important roles in the control of sociosexual behaviors that are perturbed in adulthood by prenatal EDC exposure. Pregnant Sprague-Dawley rats were exposed to PCBs from Embryonic Day 8 (E8) to E18, encompassing the period of neurogenesis of all hypothalamic neurons. To determine the birth dates of neurons, bromo-2-deoxy-5-uridine (BrdU) was administered to dams on E12, E14, or E16. On the day after birth, male and female pups were perfused, brains immunolabeled for BrdU, and numbers of cells counted. In the VMN, exposure to PCBs significantly advanced the timing of neurogenesis compared to vehicle-treated pups, without changing the total number of BrdU+ cells. In the POA, PCBs did not change the timing of neurogenesis nor the total number of cells born. This is the first study to show that PCBs can shift the timing of neurogenesis in the hypothalamus, specifically in the VMN but not the POA. This result has implications for functions controlled by the VMN, especially sociosexual behaviors, as well as for sexual selection more generally.


Subject(s)
Endocrine Disruptors/pharmacology , Hypothalamus/drug effects , Neurogenesis/drug effects , Animals , Aroclors/pharmacology , Female , Fetus/drug effects , Neurons/drug effects , Polychlorinated Biphenyls/pharmacology , Pregnancy , Preoptic Area/cytology , Preoptic Area/drug effects , Rats , Rats, Sprague-Dawley , Sexual Behavior/drug effects , Ventromedial Hypothalamic Nucleus/cytology , Ventromedial Hypothalamic Nucleus/drug effects
3.
Pharmacol Biochem Behav ; 165: 36-44, 2018 02.
Article in English | MEDLINE | ID: mdl-29273457

ABSTRACT

The present study characterized the effects of ketamine on sexual behavior and anxiety in female rats. In Experiment 1, female subjects received an injection of ketamine (10.0mg/kg) or saline 30min prior to a sexual partner-preference test during which each female subject was given the opportunity to interact with a female stimulus or a sexually vigorous male stimulus. Immediately afterwards, female subjects were tested for locomotion in an open field test. Ketamine-treated subjects spent significantly more time with the male stimulus than saline-treated subjects. No other measures of mating behavior (i.e., paced mating behavior, lordosis) were affected by ketamine. Ketamine also had no effect on locomotion. In Experiment 2, female subjects received an injection of ketamine (10.0mg/kg), or saline daily for 10days to investigate the possibility that sexual dysfunction emerges only after repeated exposure. Similar to the results of Experiment 1, ketamine-treated subjects spent significantly more time with the male stimulus than saline-treated subjects. Chronic ketamine treatment also decreased the likelihood of leaving the male after mounts, without affecting any other measures of sexual behavior. Chronic ketamine had no effect on locomotion. In Experiment 3, female subjects received an injection of ketamine (10.0mg/kg) or saline and were tested for anxiety in an elevated plus maze test and for locomotion in an open field test. Acute ketamine had no effect on anxiety or locomotion. In Experiment 4, female subjects received an injection of ketamine (10.0mg/kg) or saline daily for 10days to investigate the possibility that anxiety emerges only after repeated exposure. Chronic ketamine exposure had no effect on any measure of anxiety. However, chronic ketamine exposure increased locomotion. The results from these experiments indicate that unlike other medications prescribed for depression, neither acute nor chronic ketamine treatment causes anxiety or disruption of sexual behavior.


Subject(s)
Antidepressive Agents/pharmacology , Anxiety/chemically induced , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Locomotion/drug effects , Sexual Behavior, Animal/drug effects , Animals , Female , Injections, Intraperitoneal , Male , Maze Learning , Rats, Long-Evans , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...