Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 11(1): 14532, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34267258

ABSTRACT

Agonistic profiles of AMPA receptor (AMPA-R) potentiators may be associated with seizure risk and bell-shaped dose-response effects. Here, we report the pharmacological characteristics of a novel AMPA-R potentiator, TAK-653, which exhibits minimal agonistic properties. TAK-653 bound to the ligand binding domain of recombinant AMPA-R in a glutamate-dependent manner. TAK-653 strictly potentiated a glutamate-induced Ca2+ influx in hGluA1i-expressing CHO cells through structural interference at Ser743 in GluA1. In primary neurons, TAK-653 augmented AMPA-induced Ca2+ influx and AMPA-elicited currents via physiological AMPA-R with little agonistic effects. Interestingly, TAK-653 enhanced electrically evoked AMPA-R-mediated EPSPs more potently than AMPA (agonist) or LY451646 (AMPA-R potentiator with a prominent agonistic effect) in brain slices. Moreover, TAK-653 improved cognition for both working memory and recognition memory, while LY451646 did so only for recognition memory, and AMPA did not improve either. These data suggest that the facilitation of phasic AMPA-R activation by physiologically-released glutamate is the key to enhancing synaptic and cognitive functions, and nonselective activation of resting AMPA-Rs may negatively affect this process. Importantly, TAK-653 had a wide safety margin against convulsion; TAK-653 showed a 419-fold (plasma Cmax) and 1017-fold (AUC plasma) margin in rats. These findings provide insight into a therapeutically important aspect of AMPA-R potentiation.


Subject(s)
Cognition/drug effects , Neurons/drug effects , Receptors, AMPA/agonists , Animals , Brain-Derived Neurotrophic Factor/metabolism , CHO Cells , Calcium/metabolism , Cognition/physiology , Cricetulus , Female , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Mice, Inbred ICR , Neurons/metabolism , Patch-Clamp Techniques , Rats, Sprague-Dawley , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Sulfonamides/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
3.
Neuropsychopharmacology ; 44(5): 961-970, 2019 04.
Article in English | MEDLINE | ID: mdl-30209408

ABSTRACT

Activation of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPA-R) is a promising strategy to treat psychiatric and neurological diseases if issues of bell-shaped response and narrow safety margin against seizure can be overcome. Here, we show that structural interference at Ser743 in AMPA-R is a key to lower the agonistic effect of AMPA-R potentiators containing dihydropyridothiadiazine 2,2-dioxides skeleton. With this structural insight, TAK-137, 9-(4-phenoxyphenyl)-3,4-dihydropyrido[2,1-c][1,2,4]thiadiazine 2,2-dioxide, was discovered as a novel AMPA-R potentiator with a lower agonistic effect than an AMPA-R potentiator LY451646 ((R)-N-(2-(4'-cyanobiphenyl-4-yl)propyl)propane-2-sulfonamide) in rat primary neurons. TAK-137 induced brain-derived neurotrophic factor in neurons in rodents and potently improved cognition in both rats and monkeys. Compared to LY451646, TAK-137 had a wider safety margin against seizure in rats. TAK-137 enhanced neural progenitor proliferation over a broader range of doses in rodents. Thus, TAK-137 is a promising AMPA-R potentiator with potent procognitive effects and lower risks of bell-shaped response and seizure. These data may open the door for the development of AMPA-R potentiators as therapeutic drugs for psychiatric and neurological diseases.


Subject(s)
Brain-Derived Neurotrophic Factor/drug effects , Cognition/drug effects , Excitatory Amino Acid Agents/pharmacology , Neural Stem Cells/drug effects , Neurons/drug effects , Receptors, AMPA/drug effects , Seizures/chemically induced , Animals , Behavior, Animal/drug effects , Cell Line , Cell Proliferation/drug effects , Excitatory Amino Acid Agents/administration & dosage , Excitatory Amino Acid Agents/adverse effects , Haplorhini , Mice, Inbred C57BL , Mice, Inbred ICR , Primary Cell Culture , Rats, Long-Evans , Rats, Sprague-Dawley , Sulfonamides/pharmacology
4.
Bioorg Med Chem Lett ; 28(18): 3067-3072, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30098865

ABSTRACT

CCR6 has been implicated in both autoimmune diseases and non-autoimmune diseases. Thus, inhibition of CCR6-dependent cell migration is an attractive strategy for their treatment. An orally available small molecule inhibitor of CCR6 could therefore be a useful biological probe for the pathophysiological studies. Initial SAR study of a hit compound provided potent N-benzenesulfonylpiperidine derivatives that suppressed CCL20-induced Gi signals. By subsequent scaffold morphing of the central ring and further optimization, we identified a novel series of 1,4-trans-1-benzenesulfonyl-4-aminocyclohexanes as potent and selective CCR6 inhibitors with good pharmacokinetic properties. Our compounds showed good correlation between Gi signal inhibitory activity and cell migration inhibitory activity in human CCR6-transfected CHO cells. In addition, representative compound 35 potently inhibited CCR6-dependent cell migration and the increase in ERK phosphorylation in human primary cells. Therefore, the compound could be used effectively as a biological probe against human CCR6.


Subject(s)
Amines/pharmacology , Cyclohexanes/pharmacology , Piperidines/pharmacology , Receptors, CCR6/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Amines/chemical synthesis , Amines/chemistry , Animals , B-Lymphocytes/drug effects , CHO Cells , Cell Movement/drug effects , Cricetulus , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Dose-Response Relationship, Drug , Haplorhini , Humans , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Receptors, CCR6/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
5.
J Pharmacol Exp Ther ; 364(3): 377-389, 2018 03.
Article in English | MEDLINE | ID: mdl-29298820

ABSTRACT

α-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor (AMPA-R) potentiators with brain-derived neurotrophic factor (BDNF)-induction potential could be promising as therapeutic drugs for neuropsychiatric and neurologic disorders. However, AMPA-R potentiators such as LY451646 have risks of narrow bell-shaped responses in pharmacological effects, including in vivo BDNF induction. Interestingly, LY451646 and LY451395, other AMPA-R potentiators, showed agonistic effects and exhibited bell-shaped responses in the BDNF production in primary neurons. We hypothesized that the agonistic property is related to the bell-shaped response and endeavored to discover novel AMPA-R potentiators with lower agonistic effects. LY451395 showed an agonistic effect in primary neurons, but not in a cell line expressing AMPA-Rs, in Ca2+ influx assays; thus, we used a Ca2+ influx assay in primary neurons and, from a chemical library, discovered two AMPA-R potentiators with lower agonistic effects: 2-(((5-methyl-3-(trifluoromethyl)-1H-pyrazol-1-yl)acetyl)amino)-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxamide (HBT1) and (3S)-1-(4-tert-butylphenyl)-N-((1R)-2-(dimethylamino)-1-phenylethyl)-3-isobutyl-2-oxopyrrolidine-3-carboxamide (OXP1). In a patch-clamp study using primary neurons, HBT1 showed little agonistic effect, whereas both LY451395 and OXP1 showed remarkable agonistic effects. HBT1, but not OXP1, did not show remarkable bell-shaped response in BDNF production in primary neurons. HBT1 bound to the ligand-binding domain (LBD) of AMPA-R in a glutamate-dependent manner. The mode of HBT1 and LY451395 binding to a pocket in the LBD of AMPA-R differed: HBT1, but not LY451395, formed hydrogen bonds with S518 in the LBD. OXP1 may bind to a cryptic binding pocket on AMPA-R. Lower agonistic profile of HBT1 may associate with its lower risks of bell-shaped responses in BDNF production in primary neurons.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Pyrazoles/pharmacology , Receptors, AMPA/agonists , Thiophenes/pharmacology , Animals , Biphenyl Compounds/pharmacology , Calcium/metabolism , Dose-Response Relationship, Drug , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Sulfonamides/pharmacology
6.
Eur J Med Chem ; 139: 114-127, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-28800452

ABSTRACT

A series of phenoxyethylamine derivatives was designed and synthesized to discover potent and selective human α1D adrenoceptor (α1D adrenergic receptor; α1D-AR) antagonists. Compound 7 was taken from our internal compound collection as an attractive starting point and exhibited moderate binding affinity for α1D-AR and high selectivity against α1A- and α1B-ARs. We focused on modifying the 2-methylsulfonylbenzyl group of 7 to discover novel compounds structurally distinct from other reported α1-AR antagonists containing the phenoxyethylamine motif. Study of structure activity relationship guided by a targeted ligand-lipophilicity efficiency score led to the discovery of a novel scaffold of 3,4-dihydro-2H-thiochromene 1,1-dioxide for selective α1D-AR antagonists. Further optimization studies resulted in the identification of (4S)-N4-[2-(2,5-difluorophenoxy)ethyl]-N6-methyl-3,4-dihydro-2H-thiochromene-4,6-diamine 1,1-dioxide, (S)-41, as a novel, highly potent and selective α1D-AR antagonist. Herein, we provide details of the structure activity relationship of the phenoxyethylamine analog for the potency and selectivity.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists/pharmacology , Benzopyrans/pharmacology , Enzyme Inhibitors/pharmacology , Ethylamines/pharmacology , Receptors, Adrenergic, alpha-1/metabolism , Adrenergic alpha-1 Receptor Antagonists/chemical synthesis , Adrenergic alpha-1 Receptor Antagonists/chemistry , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Cytochrome P-450 CYP3A/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ethylamines/chemistry , Humans , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship
7.
J Med Chem ; 60(2): 608-626, 2017 01 26.
Article in English | MEDLINE | ID: mdl-27966948

ABSTRACT

On the basis of a superposition study of X-ray crystal structures of complexes of quinazoline derivative 1 and triazole derivative 2 with matrix metalloproteinase (MMP)-13 catalytic domain, a novel series of fused pyrimidine compounds which possess a 1,2,4-triazol-3-yl group as a zinc binding group (ZBG) was designed. Among the herein described and evaluated compounds, 31f exhibited excellent potency for MMP-13 (IC50 = 0.036 nM) and selectivities (greater than 1,500-fold) over other MMPs (MMP-1, -2, -3, -7, -8, -9, -10, and -14) and tumor necrosis factor-α converting enzyme (TACE). Furthermore, the inhibitor was shown to protect bovine nasal cartilage explants against degradation induced by interleukin-1 and oncostatin M. In this article, we report the discovery of extremely potent, highly selective, and orally bioavailable fused pyrimidine derivatives that possess a 1,2,4-triazol-3-yl group as a novel ZBG for selective MMP-13 inhibition.


Subject(s)
Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrimidinones/pharmacology , Thiophenes/pharmacology , Triazoles/pharmacology , Zinc/chemistry , Animals , Cartilage/metabolism , Cattle , Chelating Agents/chemical synthesis , Chelating Agents/pharmacology , Collagen/metabolism , Drug Design , Matrix Metalloproteinase Inhibitors/chemical synthesis , Pyrimidines/chemical synthesis , Pyrimidinones/chemical synthesis , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Thiophenes/chemical synthesis , Triazoles/chemical synthesis
8.
Bioorg Med Chem ; 24(23): 6149-6165, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27825552

ABSTRACT

Matrix metalloproteinase-13 (MMP-13), a member of the collagenase family of enzymes, has been implicated to play a key role in the pathology of osteoarthritis. Recently, we have reported the discovery of a series of quinazoline-2-carboxamide based non-zinc-binding MMP-13 selective inhibitors, as exemplified by compound 1. We then continued our research of a novel class of zinc-binding inhibitors to obtain follow-up compounds with different physicochemical, pharmacokinetic, and biological activity profiles. In order to design selective MMP-13 inhibitors, we adopted a strategy of connecting a zinc-binding group with the quinazoline-2-carboxamide system, a unique S1' binder, by an appropriate linker. Among synthesized compounds, a triazolone inhibitor 35 exhibited excellent potency (IC50=0.071nM) and selectivity (greater than 170-fold) over other MMPs (MMP-1, 2, 3, 7, 8, 9, 10, 12, and 14) and tumor necrosis factor-α converting enzyme (TACE). In this article, the design, synthesis, and biological activity of novel zinc-binding MMP-13 inhibitors are described.


Subject(s)
Amides/pharmacology , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Quinazolinones/pharmacology , Triazoles/pharmacology , Zinc/chemistry , ADAM17 Protein/antagonists & inhibitors , Amides/chemical synthesis , Amides/pharmacokinetics , Animals , Drug Design , Humans , Matrix Metalloproteinase Inhibitors/chemical synthesis , Matrix Metalloproteinase Inhibitors/pharmacokinetics , Microsomes, Liver/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Quinazolinones/chemical synthesis , Quinazolinones/pharmacokinetics , Rats , Triazoles/chemical synthesis , Triazoles/pharmacokinetics
9.
J Med Chem ; 59(7): 2989-3002, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26954848

ABSTRACT

A novel structural class of iminopyridine derivative 1 was identified as a potent and selective human α1D adrenoceptor (α1D adrenergic receptor; α1D-AR) antagonist against α1A- and α1B-AR through screening of an in-house compound library. From initial structure-activity relationship studies, we found lead compound 9m with hERG K(+) channel liability. To develop analogues with reduced hERG K(+) channel inhibition, a combination of site-directed mutagenesis and docking studies was employed. Further optimization led to the discovery of (R)-9s and 9u, which showed antagonistic activity by a bladder strip test in rats with bladder outlet obstruction, as well as ameliorated cystitis-induced urinary frequency in rats. Ultimately, 9u was selected as a clinical candidate. This is the first study to show the utility of iminopyridine derivatives as selective α1D-AR antagonists and evaluate their effects in vivo.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists/chemistry , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Imines/chemistry , Imines/pharmacology , Niacinamide/analogs & derivatives , Receptors, Adrenergic, alpha-1/metabolism , Administration, Oral , Adrenergic alpha-1 Receptor Antagonists/administration & dosage , Adrenergic alpha-1 Receptor Antagonists/pharmacokinetics , Animals , Chemistry Techniques, Synthetic , Cystitis/chemically induced , Cystitis/drug therapy , Disease Models, Animal , Drug Discovery , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Imines/administration & dosage , Molecular Docking Simulation , Mutagenesis, Site-Directed , Niacinamide/administration & dosage , Niacinamide/chemistry , Niacinamide/pharmacology , Rats , Structure-Activity Relationship , Urinary Bladder/drug effects , Urinary Bladder/physiology , Urinary Bladder Neck Obstruction/drug therapy , Urinary Bladder Neck Obstruction/physiopathology , Urinary Bladder, Overactive/drug therapy
10.
J Med Chem ; 57(21): 8886-902, 2014 Nov 13.
Article in English | MEDLINE | ID: mdl-25264600

ABSTRACT

Matrix metalloproteinase-13 (MMP-13) has been implicated to play a key role in the pathology of osteoarthritis. On the basis of X-ray crystallography, we designed a series of potent MMP-13 selective inhibitors optimized to occupy the distinct deep S1' pocket including an adjacent branch. Among them, carboxylic acid inhibitor 21k exhibited excellent potency and selectivity for MMP-13 over other MMPs. An effort to convert compound 21k to the mono sodium salt 38 was promising in all animal species studied. Moreover, no overt toxicity was observed in a preliminary repeat dose oral toxicity study of compound 21k in rats. A single oral dose of compound 38 significantly reduced degradation products (CTX-II) released from articular cartilage into the joint cavity in a rat MIA model in vivo. In this article, we report the discovery of highly potent, selective, and orally bioavailable MMP-13 inhibitors as well as their detailed structure-activity data.


Subject(s)
Benzoates/chemical synthesis , Benzoates/pharmacology , Matrix Metalloproteinase 13/drug effects , Matrix Metalloproteinase Inhibitors/chemical synthesis , Matrix Metalloproteinase Inhibitors/pharmacology , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Animals , Benzoates/pharmacokinetics , Binding Sites , Crystallography, X-Ray , Humans , Inhibitory Concentration 50 , Matrix Metalloproteinase Inhibitors/pharmacokinetics , Osteoarthritis/drug therapy , Quinazolines/pharmacokinetics , Rats , Structure-Activity Relationship
11.
Bioorg Med Chem ; 22(19): 5487-505, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25192810

ABSTRACT

On the basis of X-ray co-crystal structures of matrix metalloproteinase-13 (MMP-13) in complex with its inhibitors, our structure-based drug design (SBDD) strategy was directed to achieving high affinity through optimal protein-ligand interaction with the unique S1″ hydrophobic specificity pocket. This report details the optimization of lead compound 44 to highly potent and selective MMP-13 inhibitors based on fused pyrimidine scaffolds represented by the thienopyrimidin-4-one 26c. Furthermore, we have examined the release of collagen fragments from bovine nasal cartilage in response to a combination of IL-1 and oncostatin M.


Subject(s)
Benzene Derivatives/chemistry , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase Inhibitors/administration & dosage , Matrix Metalloproteinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Administration, Oral , Benzene Derivatives/administration & dosage , Benzene Derivatives/pharmacology , Binding Sites/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Matrix Metalloproteinase Inhibitors/chemistry , Models, Molecular , Molecular Structure , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...