Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 79(5): 967-974, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31025976

ABSTRACT

This study presents a catalytic organic pollution treatment using the solution plasma process (SPP) with incidentally co-generated copper (Cu) nanoparticles via Cu electrode erosion. Methylene blue (MB) was used as a model organic contaminant. The treatment time was from 0 to 60 minutes at the plasma frequencies of 15 and 30 kHz. The treatment efficacy using the Cu electrode was compared with that of the tungsten (W) electrode. The high erosion-resistant W electrode provided no W nanoparticles, while the low erosion-resistant Cu electrode yielded incidental nanoparticles (10-20 nm), hypothesized to catalyze the MB degradation during the SPP. The percentage of MB degradation and the hydrogen peroxide (H2O2) generation were determined by an ultraviolet-visible spectrophotometer. The results showed that, after the SPP by the Cu electrode for 60 minutes, the MB was degraded up to 96%. Using the Cu electrode at a high plasma frequency strongly accelerated the Cu nanoparticle generation and MB treatment, although the amount of H2O2 generated during the SPP using the Cu electrode was less than that of the W electrode. The Cu nanoparticles were hypothesized to enhance MB degradation via both homogeneous (release of dissolved Cu ions) and heterogeneous (on the surface of the particles) catalytic processes.


Subject(s)
Metal Nanoparticles/chemistry , Methylene Blue/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Catalysis , Copper/chemistry , Hydrogen Peroxide , Methylene Blue/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...