Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Curr Opin Gastroenterol ; 40(2): 62-69, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38230695

ABSTRACT

PURPOSE OF REVIEW: Advances in the understanding of bile salt synthesis, transport and signalling show the potential of modulating bile salt homeostasis as a therapeutic strategy in cholestatic liver diseases. Here, recent developments in (pre)clinical research in this field is summarized and discussed. RECENT FINDINGS: Inhibition of the apical sodium-dependent bile salt transporter (ASBT) and Na + -taurocholate cotransporting polypeptide (NTCP) seems effective against cholestatic liver diseases, as well as Farnesoid X receptor (FXR) agonism or a combination of both. While approved for the treatment of primary biliary cholangitis (PBC) and intrahepatic cholestasis of pregnancy (ICP), ursodeoxycholic acid (UDCA) has retrospectively shown carefully promising results in primary sclerosing cholangitis (PSC). The side chain shortened derivate norUDCA is of further therapeutic interest since its mechanisms of action are independent of the bile salt transport machinery. In the pathogenesis of sclerosing cholangiopathies, a skewed T-cell response with alterations in gut microbiota and bile salt pool compositions are observed. In PSC pathogenesis, the bile salt receptor Takeda G-protein-coupled receptor 5 (TGR5) in cholangiocytes is implicated, whilst in immunoglobulin G4-related cholangitis the autoantigens annexin A11 and laminin 511-E8 are involved in protecting cholangiocytes. SUMMARY: Modulating bile salt homeostasis has proven a promising treatment strategy in models of cholestasis and are continuously being further developed. Confirmatory clinical studies are needed in order to assess the proposed treatment strategies in patients allowing for a broader therapeutic arsenal in the future.


Subject(s)
Cholestasis, Intrahepatic , Cholestasis , Humans , Bile Acids and Salts , Retrospective Studies , Ursodeoxycholic Acid/therapeutic use , Cholestasis/drug therapy , Cholestasis, Intrahepatic/drug therapy , Homeostasis
2.
JHEP Rep ; 6(1): 100917, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38074508

ABSTRACT

Background & Aims: Intestine-restricted inhibitors of the apical sodium-dependent bile acid transporter (ASBT, or ileal bile acid transporter) are approved as treatment for several inheritable forms of cholestasis but are also associated with abdominal complaints and diarrhoea. Furthermore, blocking ASBT as a single therapeutic approach may be less effective in moderate to severe cholestasis. We hypothesised that interventions that lower hepatic bile salt synthesis in addition to intestinal bile salt uptake inhibition provide added therapeutic benefit in the treatment of cholestatic disorders. Here, we test combination therapies of intestinal ASBT inhibition together with obeticholic acid (OCA), cilofexor, and the non-tumorigenic fibroblast growth factor 15 (Fgf15)/fibroblast growth factor 19 (FGF19) analogue aldafermin in a mouse model of cholestasis. Methods: Wild-type male C57Bl6J/OlaHsd mice were fed a 0.05% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet and received daily oral gavage with 10 mg/kg OCA, 30 mg/kg cilofexor, 10 mg/kg ASBT inhibitor (Linerixibat; ASBTi), or a combination. Alternatively, wild-type male C57Bl6J/OlaHsd mice were injected with adeno-associated virus vector serotype 8 (AAV8) to express aldafermin, to repress bile salt synthesis, or to control AAV8. During a 3-week 0.05% DDC diet, mice received daily oral gavage with 10 mg/kg ASBTi or placebo control. Results: Combination therapy of OCA, cilofexor, or aldafermin with ASBTi effectively reduced faecal bile salt excretion. Compared with ASBTi monotherapy, aldafermin + ASBTi further lowered plasma bile salt levels. Cilofexor + ASBTi and aldafermin + ASBTi treatment reduced plasma alanine transaminase and aspartate transaminase levels and fibrotic liver immunohistochemistry stainings. The reduction in inflammation and fibrogenesis in mice treated with cilofexor + ASBTi or aldafermin + ASBTi was confirmed by gene expression analysis. Conclusions: Combining pharmacological intestinal bile salt uptake inhibition with repression of bile salt synthesis may form an effective treatment strategy to reduce liver injury while dampening the ASBTi-induced colonic bile salt load. Impact and Implications: Combined treatment of intestinal ASBT inhibition with repression of bile salt synthesis by farnesoid X receptor agonism (using either obeticholic acid or cilofexor) or by expression of aldafermin ameliorates liver damage in cholestatic mice. In addition, compared with ASBT inhibitor monotherapy, combination treatments lower colonic bile salt load.

3.
Biochimie ; 210: 50-60, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37236340

ABSTRACT

Antipsychotic drugs are prescribed to a wide range of individuals to treat mental health conditions including schizophrenia. However, antipsychotic drugs cause bone loss and increase fracture risk. We previously found that the atypical antipsychotic (AA) drug risperidone causes bone loss through multiple pharmacological mechanisms, including activation of the sympathetic nervous system in mice treated with clinically relevant doses. However, bone loss was dependent upon housing temperature, which modulates sympathetic activity. Another AA drug, olanzapine, has substantial metabolic side effects, including weight gain and insulin resistance, but it is unknown whether bone and metabolic outcomes of olanzapine are also dependent upon housing temperature in mice. We therefore treated eight week-old female mice with vehicle or olanzapine for four weeks, housed at either room temperature (23 °C) or thermoneutrality (28-30 °C), which has previously been shown to be positive for bone. Olanzapine caused significant trabecular bone loss (-13% BV/TV), likely through increased RANKL-dependent osteoclast resorption, which was not suppressed by thermoneutral housing. Additionally, olanzapine inhibited cortical bone expansion at thermoneutrality, but did not alter cortical bone expansion at room temperature. Olanzapine also increased markers of thermogenesis within brown and inguinal adipose depots independent of housing temperature. Overall, olanzapine causes trabecular bone loss and inhibits the positive effect of thermoneutral housing on bone. Understanding how housing temperature modulates the impact of AA drugs on bone is important for future pre-clinical studies, as well as for the prescription of AA drugs, particularly to older adults and adolescents who are most vulnerable to the effects on bone.


Subject(s)
Antipsychotic Agents , Female , Mice , Animals , Olanzapine/adverse effects , Antipsychotic Agents/adverse effects , Housing , Cancellous Bone , Mice, Inbred C57BL
4.
JHEP Rep ; 4(11): 100573, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36160754

ABSTRACT

Background & Aims: Non-absorbable inhibitors of the apical sodium-dependent bile acid transporter (ASBT; also called ileal bile acid transporter [IBAT]) are recently approved or in clinical development for multiple cholestatic liver disorders and lead to a reduction in pruritus and (markers for) liver injury. Unfortunately, non-absorbable ASBT inhibitors (ASBTi) can induce diarrhoea or may be ineffective if cholestasis is extensive and largely precludes intestinal excretion of bile acids. Systemically acting ASBTi that divert bile salts towards renal excretion may alleviate these issues. Methods: Bile duct ligation (BDL) was performed in ASBT-deficient (ASBT knockout [KO]) mice as a model for chronic systemic ASBT inhibition in obstructive cholestasis. Co-infusion of radiolabelled taurocholate and inulin was used to quantify renal bile salt excretion after BDL. In a second (wild-type) mouse model, a combination of obeticholic acid (OCA) and intestine-restricted ASBT inhibition was used to lower the bile salt pool size before BDL. Results: After BDL, ASBT KO mice had reduced plasma bilirubin and alkaline phosphatase compared with wild-type mice with BDL and showed a marked reduction in liver necrotic areas at histopathological analysis, suggesting decreased BDL-induced liver damage. Furthermore, ASBT KO mice had reduced bile salt pool size, lower plasma taurine-conjugated polyhydroxylated bile salt, and increased urinary bile salt excretion. Pretreatment with OCA + ASBTi in wild-type mice reduced the pool size and greatly improved liver injury markers and liver histology. Conclusions: A reduced bile salt pool at the onset of cholestasis effectively lowers cholestatic liver injury in mice. Systemic ASBT inhibition may be valuable as treatment for cholestatic liver disease by lowering the pool size and increasing renal bile salt output even under conditions of minimal faecal bile salt secretion. Lay summary: Novel treatment approaches against cholestatic liver disease (resulting in reduced or blocked flow of bile) involve non-absorbable inhibitors of the bile acid transport protein ASBT, but these are not always effective and/or can cause unwanted side effects. In this study, we demonstrate that systemic inhibition/inactivation of ASBT protects mice against developing severe cholestatic liver injury after bile duct ligation, by reducing bile salt pool size and increasing renal bile salt excretion.

6.
JBMR Plus ; 5(10): e10541, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34693191

ABSTRACT

Atypical antipsychotic (AA) drugs, such as risperidone, are associated with endocrine and metabolic side effects, including impaired bone mineral density (BMD) acquisition and increased fracture risk. We have previously shown that risperidone causes bone loss through the sympathetic nervous system and that bone loss is associated with elevated markers of thermogenesis in brown and white adipose tissue. Because rodents are normally housed in sub-thermoneutral conditions, we wanted to test whether increasing housing temperature would protect against bone loss from risperidone. Four weeks of risperidone treatment in female C57BL/6J mice at thermoneutral (28°C) housing attenuated risperidone-induced trabecular bone loss and led to a low-turnover bone phenotype, with indices of both bone formation and resorption suppressed in mice with risperidone treatment at thermoneutrality, whereas indices of bone resorption were elevated by risperidone at room temperature. Protection against trabecular bone loss was not absolute, however, and additional evidence of cortical bone loss emerged in risperidone-treated mice at thermoneutrality. Taken together, these findings suggest thermal challenge may be in part responsible for bone loss with risperidone treatment and that housing temperature should be considered when assessing bone outcomes of treatments that impact thermogenic pathways. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
Hepatology ; 73(6): 2577-2585, 2021 06.
Article in English | MEDLINE | ID: mdl-33222321

ABSTRACT

Bile salts play a pivotal role in lipid homeostasis, are sensed by specialized receptors, and have been implicated in various disorders affecting the gut or liver. They may play a role either as culprit or as potential panacea. Four very efficient transporters mediate most of the hepatic and intestinal bile salt uptake and efflux, and are each essential for the efficient enterohepatic circulation of bile salts. Starting from the intestinal lumen, conjugated bile salts cross the otherwise impermeable lipid bilayer of (primarily terminal ileal) enterocytes through the apical sodium-dependent bile acid transporter (gene SLC10A2) and leave the enterocyte through the basolateral heteromeric organic solute transporter, which consists of an alpha and beta subunit (encoded by SLC51A and SLC51B). The Na+ -taurocholate cotransporting polypeptide (gene SLC10A1) efficiently clears the portal circulation of bile salts, and the apical bile salt export pump (gene ABCB11) pumps the bile salts out of the hepatocyte into primary bile, against a very steep concentration gradient. Recently, individuals lacking either functional Na+ -taurocholate cotransporting polypeptide or organic solute transporter have been described, completing the quartet of bile acid transport deficiencies, as apical sodium-dependent bile acid transporter and bile salt export pump deficiencies were already known for years. Novel pathophysiological insights have been obtained from knockout mice lacking functional expression of these genes and from pharmacological transporter inhibition in mice or humans. Conclusion: We provide a concise overview of the four main bile salt transport pathways and of their status as possible targets of interventions in cholestatic or metabolic disorders.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11 , Bile Acids and Salts/metabolism , Enterohepatic Circulation/physiology , Membrane Transport Proteins , Organic Anion Transporters, Sodium-Dependent , Receptors, G-Protein-Coupled , Symporters , ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism , Animals , Biological Transport, Active/drug effects , Biological Transport, Active/physiology , Drug Development , Enterohepatic Circulation/drug effects , Humans , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Symporters/antagonists & inhibitors , Symporters/genetics , Symporters/metabolism
8.
Biochem Pharmacol ; 180: 114173, 2020 10.
Article in English | MEDLINE | ID: mdl-32717228

ABSTRACT

A large variety of model systems are used in hepatobiliary research. In this review, we aim to provide an overview of established and emerging models for specific research questions. We specifically discuss the value and limitations of these models for research on metabolic associated fatty liver disease (MAFLD), (previously named non-alcoholic fatty liver diseases/non-alcoholic steatohepatitis (NAFLD/NASH)) and cholestasis-related diseases such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). The entire range of models is discussed varying from immortalized cell lines, mature or pluripotent stem cell-based models including organoids/spheroids, to animal models and human ex vivo models such as normothermic machine perfusion of livers and living liver slices. Finally, the pros and cons of each model are discussed as well as the need in the scientific community for continuous innovation in model development to better mimic the human (patho)physiology.


Subject(s)
Bile/metabolism , Disease Models, Animal , Hepatocytes/metabolism , Liver Cirrhosis, Biliary/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Cell Line, Transformed , Hepatocytes/pathology , Humans , Liver/pathology , Liver Cirrhosis, Biliary/pathology , Non-alcoholic Fatty Liver Disease/pathology , Organ Culture Techniques
9.
Thyroid ; 29(9): 1336-1343, 2019 09.
Article in English | MEDLINE | ID: mdl-31303139

ABSTRACT

Background: Inflammation is associated with marked changes in cellular thyroid hormone (TH) metabolism in triiodothyronine (T3) target organs. In the hypothalamus, type 2 deiodinase (D2), the main T3 producing enzyme, increases upon inflammation, leading to an increase in local T3 availability, which in turn decreases thyrotropin releasing hormone expression in the paraventricular nucleus. Type 3 deiodinase (D3), the T3 inactivating enzyme, decreases during inflammation, which might also contribute to the increased T3 availability in the hypothalamus. While it is known that D2 is regulated by nuclear factor κB (NF-κB) during inflammation, the underlying mechanisms of D3 regulation are unknown. Therefore, the aim of the present study was to investigate inflammation-induced D3 regulation using in vivo and in vitro models. Methods: Mice were injected with a sublethal dose of bacterial endotoxin (lipopolysaccharide [LPS]) to induce a systemic acute-phase response. A human neuroblastoma (SK-N-AS) cell line was used to test the involvement of the thyroid hormone receptor alpha 1 (TRα1) as well as the activator protein-1 (AP-1) and NF-κB inflammatory pathways in the inflammation-induced decrease of D3. Results: D3 expression in the hypothalamus was decreased 24 hours after LPS injection in mice. This decrease was similar in mice lacking the TRα. Incubation of SK-N-AS cells with LPS robustly decreased both D3 mRNA expression and activity. This led to increased intracellular T3 concentrations. The D3 decrease was prevented when NF-κB or AP-1 was inhibited. TRα1 mRNA expression decreased in SK-N-AS cells incubated with LPS, but knockdown of the TRα in SK-N-AS cells did not prevent the LPS-induced D3 decrease. Conclusions: We conclude that the inflammation-induced D3 decrease in the hypothalamus is mediated by the inflammatory pathways NF-κB and AP-1, but not TRα1. Furthermore, the observed decrease modulates intracellular T3 concentrations. Our results suggest a concerted action of inflammatory modulators to regulate both hypothalamic D2 and D3 activities to increase the local TH concentrations.


Subject(s)
Hypothalamus/enzymology , Inflammation/metabolism , Iodide Peroxidase/genetics , Animals , Cell Line, Tumor , Down-Regulation , Female , Humans , Iodide Peroxidase/physiology , Lipopolysaccharides , Male , Mice , NF-kappa B/physiology , RNA, Messenger/analysis , Signal Transduction , Thyroid Hormone Receptors alpha/physiology , Transcription Factor AP-1/physiology , Iodothyronine Deiodinase Type II
10.
JCI Insight ; 52019 06 25.
Article in English | MEDLINE | ID: mdl-31237863

ABSTRACT

Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na+ taurocholate co-transporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP-G protein-coupled bile acid receptor (TGR5) double knockout mice were equally protected against diet-induced-obesity as NTCP single knockout mice. NTCP knockout mice displayed decreased intestinal fat absorption and a trend towards higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure.


Subject(s)
Diet, High-Fat , Fatty Liver/genetics , Obesity/genetics , Organic Anion Transporters, Sodium-Dependent/genetics , Receptors, G-Protein-Coupled/genetics , Symporters/genetics , Weight Gain/genetics , Adipose Tissue, Brown/metabolism , Animals , Bile Acids and Salts/blood , Blood Glucose/metabolism , Body Weight , Cholesterol/blood , Dietary Fats/metabolism , Energy Metabolism/genetics , Fatty Liver/metabolism , Glucose Tolerance Test , Insulin/blood , Intestinal Absorption/genetics , Mice , Mice, Knockout , Obesity/metabolism , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...