Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34576369

ABSTRACT

Tribological properties are important to evaluate the in-service conditions of machine elements, especially those which work as tandem parts. Considering their wide range of application areas, metal matrix composites (MMCs) serve as one of the most significant materials equipped with desired mechanical properties such as strength, density, and lightness according to the place of use. Therefore, it is crucial to determine the wear performance of these materials to obtain a longer life and to overcome the possible structural problems which emerge during the production process. In this paper, extensive discussion and evaluation of the tribological performance of newly produced spheroidal graphite cast iron-reinforced (GGG-40) tin bronze (CuSn10) MMCs, including optimization, statistical, graphical, and microstructural analysis for contact zone temperature and specific wear rate, are presented. For this purpose, two levels of production temperature (400 and 450 °C), three levels of pressure (480, 640, and 820 MPa), and seven different samples reinforced by several ingredients (from 0 to 40 wt% GGG-40, pure CuSn10, and GGG-40) were investigated. According to the obtained statistical results, the reinforcement ratio is remarkably more effective on contact zone temperature and specific wear rate than temperature and pressure. A pure CuSn10 sample is the most suitable option for contact zone temperature, while pure GGG-40 seems the most suitable material for specific wear rates according to the optimization results. These results reveal the importance of reinforcement for better mechanical properties and tribological performance in measuring the capability of MMCs.

2.
Materials (Basel) ; 14(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34361410

ABSTRACT

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi's L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.

3.
Materials (Basel) ; 14(12)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204513

ABSTRACT

Surface roughness reflects the quality of many operational parameters, namely service life, wear characteristics, working performance and tribological behavior of the produced part. Therefore, tribological performance is critical for the components used as tandem parts, especially for the MMCs (Metal Matrix Composites) which are a unique class of materials having extensive application areas such as aerospace, aeronautics, marine engineering and the defense industry. Current work covers the optimization study of production parameters for surface roughness and tribological indicators of newly produced cast iron reinforced bronze MMCs. In this context, two levels of temperature (400 and 450 °C), three levels of pressure (480, 640 and 820 MPa) and seven levels of reinforcement ratios (60/40, 70/30, 80/20, 90/10, 100/0 of GGG40/CuSn10, pure bronze-as received and pure cast iron-as received) are considered. According to the findings obtained by Taguchi's signal-to-noise ratios, the reinforcement ratio has a dominant effect on surface roughness parameters (Ra and Rz), the coefficient of friction and the weight loss in different levels. In addition, 100/0 reinforced GGG40/CuSn10 gives minimum surface roughness, pure cast iron provides the best weight loss and pure bronze offers the desired coefficient of friction. The results showed the importance of material ingredients on mechanical properties by comparing a wide range of samples from starting the production phase, which provides a perspective for manufacturers to meet the market supply as per human requirements.

4.
Materials (Basel) ; 14(8)2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33921333

ABSTRACT

The features of composite materials such as production flexibility, lightness, and excellent strength put them in the class of materials that attract attention in various critical areas, i.e., aerospace, defense, automotive, and shipbuilding. However, the machining of composite materials displays challenges due to the difficulty in obtaining structural integrity. In this study, Cu/Mo-SiCP composite materials were produced by powder metallurgy with varied reinforcement ratios and then their machinability was investigated. In machinability experiments, the process parameters were selected as cutting speed (vC), feed rate (f), depth of cut (aP), and reinforcement ratio (RR). Two levels of these parameters were taken as per the Taguchi's L8 orthogonal array, and response surface methodology (RSM) is employed for parametric optimization. As a result, the outcomes demonstrated that RR = 5%, f = 0.25 mm/rev, aP = 0.25 mm, vC = 200 m/min for surface roughness, RR = 0%, f = 0.25 mm/rev and aP = 0.25 mm and vC = 200 m/min for flank wear and RR = 0%, f = 0.25 mm/rev, aP = 0.25 mm, vC = 150 m/min for cutting temperature for cutting temperature and flank wear should be selected for the desired results. In addition, ANOVA results indicate that reinforcement ratio is the dominant factor on all response parameters. Microscope images showed that the prominent failure modes on the cutting tool are flank wear, built up edge, and crater wear depending on reinforcement ratio.

5.
Sensors (Basel) ; 21(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375340

ABSTRACT

The complex structure of turning aggravates obtaining the desired results in terms of tool wear and surface roughness. The existence of high temperature and pressure make difficult to reach and observe the cutting area. In-direct tool condition, monitoring systems provide tracking the condition of cutting tool via several released or converted energy types, namely, heat, acoustic emission, vibration, cutting forces and motor current. Tool wear inevitably progresses during metal cutting and has a relationship with these energy types. Indirect tool condition monitoring systems use sensors situated around the cutting area to state the wear condition of the cutting tool without intervention to cutting zone. In this study, sensors mostly used in indirect tool condition monitoring systems and their correlations between tool wear are reviewed to summarize the literature survey in this field for the last two decades. The reviews about tool condition monitoring systems in turning are very limited, and relationship between measured variables such as tool wear and vibration require a detailed analysis. In this work, the main aim is to discuss the effect of sensorial data on tool wear by considering previous published papers. As a computer aided electronic and mechanical support system, tool condition monitoring paves the way for machining industry and the future and development of Industry 4.0.

6.
Materials (Basel) ; 13(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977625

ABSTRACT

AISI 5140 is a steel alloy used for manufacturing parts of medium speed and medium load such as gears and shafts mainly used in automotive applications. Parts made from AISI 5140 steel require machining processes such as turning and milling to achieve the final part shape. Limited research has been reported on the machining vibration and surface roughness during turning of AISI 5140 in the open literature. Therefore, the main aim of this paper is to conduct a systematic study to determine the optimum cutting conditions, analysis of vibration and surface roughness under different cutting speeds, feed rates and cutting edge angles using response surface methodology (RSM). Prediction models were developed and optimum turning parameters were obtained for averaged surface roughness (Ra) and three components of vibration (axial, radial and tangential) using RSM. The results demonstrated that the feed rate was the most affecting parameter in increasing the surface roughness (69.4%) and axial vibration (65.8%) while cutting edge angle and cutting speed were dominant on radial vibration (75.5%) and tangential vibration (64.7%), respectively. In order to obtain minimum vibration for all components and surface roughness, the optimum parameters were determined as Vc = 190 m/min, f = 0.06 mm/rev, κ = 60° with high reliability (composite desirability = 90.5%). A good agreement between predicted and measured values was obtained with the developed model to predict surface roughness and vibration during turning of AISI 5140 within a 10% error range.

7.
Sensors (Basel) ; 20(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764450

ABSTRACT

Optimization of tool life is required to tune the machining parameters and achieve the desired surface roughness of the machined components in a wide range of engineering applications. There are many machining input variables which can influence surface roughness and tool life during any machining process, such as cutting speed, feed rate and depth of cut. These parameters can be optimized to reduce surface roughness and increase tool life. The present study investigates the optimization of five different sensorial criteria, additional to tool wear (VB) and surface roughness (Ra), via the Tool Condition Monitoring System (TCMS) for the first time in the open literature. Based on the Taguchi L9 orthogonal design principle, the basic machining parameters cutting speed (vc), feed rate (f) and depth of cut (ap) were adopted for the turning of AISI 5140 steel. For this purpose, an optimization approach was used implementing five different sensors, namely dynamometer, vibration, AE (Acoustic Emission), temperature and motor current sensors, to a lathe. In this context, VB, Ra and sensorial data were evaluated to observe the effects of machining parameters. After that, an RSM (Response Surface Methodology)-based optimization approach was applied to the measured variables. Cutting force (97.8%) represented the most reliable sensor data, followed by the AE (95.7%), temperature (92.9%), vibration (81.3%) and current (74.6%) sensors, respectively. RSM provided the optimum cutting conditions (at vc = 150 m/min, f = 0.09 mm/rev, ap = 1 mm) to obtain the best results for VB, Ra and the sensorial data, with a high success rate (82.5%).

SELECTION OF CITATIONS
SEARCH DETAIL
...