Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Pharmacol Pharm Sci ; 2024: 2650540, 2024.
Article in English | MEDLINE | ID: mdl-38562542

ABSTRACT

Artemether-lumefantrine (AL) is a highly effective and commonly used Artemisinin-based Combination Therapy (ACT) for treating uncomplicated malaria caused by Plasmodium falciparum, including drug-resistant strains. However, ineffective regulatory systems in resource-limited settings can lead to the infiltration of poor-quality and counterfeit antimalarial medicines into the pharmaceutical supply chain, causing treatment failures, prolonged illness, and disease progression. The objective of the study was to assess the quality of selected brands of fixed-dose combination (FDC) AL tablets and suspensions marketed in Kumasi, Ghana. A total of fourteen brands of FDC AL medicines, comprising eight tablets and six suspensions were purchased from various retail pharmacy outlets in Kumasi, Ghana. All samples were subjected to thorough visual inspection as a quick means of checking quality through meticulous observation of the packaging or dosage form. The quality parameters of the tablets were determined using uniformity of weight, hardness, friability, and disintegration tests. Suspensions were assessed based on pH and compared with the British Pharmacopeia (BP) standard. The samples were then analyzed for drug content (assay) using reverse-phase high-performance liquid chromatography (RP-HPLC). All the tablet samples conformed to BP specification limits for uniformity of weight (deviation of less than ± 5%), hardness (4.0-10 kg/mm2), friability (<1%), and disintegration time (<15 minutes). The active pharmaceutical ingredients' quantitative assay demonstrated that all the tablets met the BP specifications (90-110%). The results of the pH studies showed that out of the six brands of suspension investigated, five (83.3%) were compliant with the official specification for pH, while one (16.7%) failed the requirement. Unlike the tablet brands, drug content analysis of the six suspensions showed that two (33.3%) were substandard. The artemether and lumefantrine contents in these failed suspensions were variable (artemether: 81.31%-116.76%; lumefantrine: 80.35%-99.71%). The study results indicate that most of the tested products met the required quality standards, demonstrating satisfactory drug content and other quality specifications. The presence of substandard drugs underscores the necessity for robust pharmacovigilance and surveillance systems to eliminate counterfeit and substandard drugs from the Ghanaian market.

2.
Adv Pharmacol Pharm Sci ; 2024: 3212298, 2024.
Article in English | MEDLINE | ID: mdl-38356988

ABSTRACT

Developing countries face enormous challenges with substandard and falsified antimalarial drugs. One specific issue is the lack of a simple, cost-effective, and robust HPLC method to simultaneously determine and quantify the active pharmaceutical ingredients (APIs) in fixed-dose artemether-lumefantrine pharmaceutical dosage forms. The current study developed a novel, simple, sensitive, precise, accurate, and cost-effective RP-HPLC method for the simultaneous determination and quantification of artemether and lumefantrine in pharmaceutical dosage forms. The HPLC analysis was carried out on an Agilent 1260 Infinity Series HPLC system equipped with an ODS Intersil-C8 (150 × 4.6 mm) 5.0 µm column, by isocratic elution. The mobile phase composition consisted of acetonitrile and 0.05% orthophosphoric acid buffer of pH 3.5 in the ratio of 70 : 30 v/v. The analysis was performed at a 1 mL/min flow rate and a column temperature of 25°C. The total run time was 6 minutes. The detection was done with a variable wavelength detector (VWD) at an isosbestic point wavelength (λ) of 210 nm. The developed method was validated according to the ICH guidelines concerning system suitability, specificity, linearity, accuracy, precision, and robustness. The system suitability of the developed method revealed satisfactory theoretical plates and symmetry factors. The method proved to be specific, with no interference of mobile phase or excipients. The calibration plot exhibited linearity over the concentration range of 275-1925 µg/mL with R2 = 0.9992 for artemether and a range of 150-1050 µg/mL with R2 = 0.9985 for lumefantrine. The accuracy of the method, determined by the recovery study, was 99.79-100.16% for artemether and 99.04-99.50% for lumefantrine. The % RSD values for intraday precision were 0.175 and 0.203, while interday precision values were 0.340 and 0.554 for artemether and lumefantrine, respectively. The method demonstrated robustness when subjected to slight modifications in the flow rate, column temperature, and mobile phase composition. The developed analytical method proved satisfactory as per ICH guidelines and hence can be used for the determination and quantification of artemether and lumefantrine in bulk drug and pharmaceutical dosage forms.

3.
Biomed Res Int ; 2023: 7838299, 2023.
Article in English | MEDLINE | ID: mdl-38146392

ABSTRACT

Acne vulgaris is an inflammatory skin condition that affects virtually everyone at some point. Papules, comedones, pustules, scarring, and nodules are standard features of the disease and can have a detrimental social and psychological impact on an individual. Although allopathic acne treatments are available, they have adverse side effects, are expensive, and are prone to cause antibiotic resistance. The present study is aimed at formulating and evaluating topical gels containing Aloe vera, Allium cepa, and Eucalyptus globulus extracts as potential antiacne drugs. Six formulations containing the herbal extracts were prepared using 1% Carbopol 940 as a gelling agent. The phytochemical composition of the plant extracts was determined. The extracts and gels' minimum inhibitory concentration (MIC) was assessed using the microbroth dilution method. The physicochemical properties of the formulated gels, such as homogeneity, colour, texture, odour, grittiness, spreadability, extrudability, viscosity, pH, and drug content, were evaluated. All the plant extracts contained alkaloids, flavonoids, tannins, triterpenoids, and coumarins. The gel formulations showed varying activity against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Candida albicans, and Pseudomonas aeruginosa at various concentrations. The phytochemical components of the plant extracts are probably responsible for the antimicrobial activity of the gel formulations. The 5% Aloe vera-Allium cepa (1 : 1) combination gel formulation showed excellent activity against Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans, with MICs of 12.50, 25.00, 6.25, 25.00, and 12.50 mg/mL, respectively. The gels generally had good physicochemical and antimicrobial properties and could be used as antiacne remedies.


Subject(s)
Acne Vulgaris , Anti-Infective Agents , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Acne Vulgaris/drug therapy , Phytochemicals/pharmacology , Microbial Sensitivity Tests , Candida albicans , Gels/pharmacology , Escherichia coli
4.
ScientificWorldJournal ; 2023: 9118067, 2023.
Article in English | MEDLINE | ID: mdl-37180374

ABSTRACT

The development of a raw material into an acceptable pharmaceutical excipient involves evaluation of the physicochemical and formulation properties of the potential raw material. Results from these evaluations may serve as a guide to subsequent use of the substance. The objective of the study was to evaluate the physicochemical and microbiological properties of the stem bark gum of Cordia millenii tree in conventional release paracetamol tablets. From the physicochemical evaluations, the gum was slightly acidic and soluble in all the aqueous-based solvents, except 0.1 N HCl in which it was sparingly soluble. All the absorptive properties of the gum indicated tablet disintegrating potential for tablet formulation. The total ash of the gum was higher than that of the international standard gum arabic. Micromeritic properties of the gum indicated the need for a flow aid to improve its flowability. There were no harmful microorganisms detected in the gum. Aerobic organisms and moulds and yeast were detected within permissible limits. Tablets formulated using six different concentrations of gum dispersions as a binder were generally soft and failed the USP T80 standard of dissolution, indicating poor binding and drug releasing properties. Quality control properties of three different batches of tablets containing varying concentrations of the dry gum as a disintegrating agent were comparable to tablets containing equal concentrations of corn starch. The in vitro drug releases were similar at all-time points of drug evaluation. The gum can therefore be considered as a good disintegrant in the formulation of conventional release tablets.


Subject(s)
Cordia , Cordia/chemistry , Trees , Plant Bark , Excipients/chemistry , Tablets/chemistry , Solubility
5.
Adv Pharmacol Pharm Sci ; 2021: 7049332, 2021.
Article in English | MEDLINE | ID: mdl-34693291

ABSTRACT

Dispersed systems such as emulsions are easily destabilised during processing and storage since they are thermodynamically unstable systems. It is for this reason emulsifiers/stabilisers are frequently employed in pharmaceutical emulsion formulations to increase their short- and long-term kinetic stability. This current study seeks to investigate the potential emulsifying property of gums obtained from Khaya senegalensis (family: Meliaceae) trees. Gums were collected, authenticated, oven-dried, milled, filtered, and purified using 96% ethanol. The microbial quality of the gum was assessed following the BP (2013) specifications. The purified gum was free from some selected pathogenic microorganisms, rendering the gum safe for consumption. The emulsifying property was investigated by formulating emulsions using castor oil and employing the dry gum method. The ratios of oil-to-water-to-gum for the formulation of a stable emulsion were determined. The stability of the emulsion was evaluated, and an effort was made to improve the stability by incorporating Tween 80, hydroxypropyl methylcellulose, and xanthan gum. From the results, it can be inferred that Tween 80 (0.5%) was able to stabilise the emulsion. Addition of xanthan gum worsened the creaming. The effects of pH (4.0, 5.5, 7.2, 9.0, and 11.0) and electrolytes (0.1 M of NaCl, KCl, and CaCl2) on the physical stability of oil-in-water emulsions were studied during 12 weeks of storage. Percentage creaming volume and whether there was phase inversion were the criteria used as the evaluation parameter. From the percentage creaming volume data, emulsions formulated with both gums showed the lowest creaming volumes at pH of 7.2, followed by the acidic regions (pH 4.0, 5.5), with the basic regions (pH 9.0, 11.0) recording the highest creaming volumes. The effects of the various electrolytes at a constant concentration of 0.1 M on the o/w emulsions were found in this order NaCl < KCl < CaCl2. This study proves that Khaya senegalensis gum can successfully be employed as an emulsifying agent in pharmaceutical formulations.

6.
J Trop Med ; 2021: 5567063, 2021.
Article in English | MEDLINE | ID: mdl-34194510

ABSTRACT

As one of the killer diseases in the world, malaria contributes to child mortality and global death annually. As a result, many reactive mechanisms have evolved to control and repel mosquitoes. The use of synthetic mosquito repellents with N,N-Diethyl-meta-toluamide (DEET) is one of the popular interventions despite its dermatological limitations such as skin irritations. Ethnobotanical reviews have identified that the adoption of natural repellents promises high repellence on mosquitoes with minimal side effects compared with synthetic ones. However, this has received little attention in modern pharmaceutical literature. This research is focused on the formulation of a natural mosquito repellent from the oil extracted from Azadirachta indica (A. Juss). The oil cream was formulated in concentrations of 10% v/w, 12.5% v/w, 15% v/w, 17.5% v/w, and 20% v/w using an in vitro evaluation approach. Pharmacopoeia characteristics of the cream such as pH, viscosity, spreadability, and organoleptic properties were carried out to verify acidity, permeation, and flow properties of the formulated cream. The spreadability rate was inversely proportional to the concentration of the cream in terms of oil content falling from 1.24 gm/s to 0.84 gm/s from concentrations 10% v/w to 20% v/w correspondingly. Skin irritation tests, however, indicated traces of irritation at 20% v/w. Repellency properties of the cream revealed a lasting effect on the mosquitoes, although this was dependent on concentration levels. Formulations of 17.5% v/w and 20% v/w neem seed oil cream had an equal repellency effect of 87.5%, whereas the synthetic repellent had a repellency of 75% within a justifiable time frame for all the formulations. This work shows that plant-based mosquito repellents promise a healthier approach in controlling mosquito bites, protecting the skin, and preventing malaria.

7.
J Drug Deliv ; 2018: 9825363, 2018.
Article in English | MEDLINE | ID: mdl-30402291

ABSTRACT

The potential of cocoa pod husk (CPH) pectin-based modified release (MR) capsules as a carrier for chronodelivery of hydrocortisone in Sprague-Dawley rats was assessed. Extemporaneously formulated CPH pectin-based hydrocortisone (10 mg) capsules crosslinked with calcium chloride (Formulation A) or zinc (Formulation B) and a commercial immediate release hydrocortisone formulation were administered orally to Sprague-Dawley rats and the pharmacokinetic parameters were evaluated using noncompartmental analysis. Formulation A had a 2 h lag phase followed by an increase in serum drug concentration in the treated rats. Peak concentrations (Cmax) of 21.799 ± 1.993 ng/ml and 20.844 ± 2.661 ng/ml were achieved after 6 ± 0.23 h and 6 ± 0.35 h (Tmax), respectively, for capsules A and B. The immediate release formulation had a peak concentration of 15.322 ± 0.313 ng/ml within 1 ± 0.2 h. The relative bioavailability of the CPH pectin-based capsules A and B was 213% and 274%, respectively. Formulations A and B had half-lives more than three times that of the immediate release formulation. The MR capsules exhibited a higher exposure, greater bioavailability, and versatility in release of cortisol than the commercial immediate release formulation. Additionally, the MR capsules exhibited an extended drug release with overnight cortisol rise and early morning cortisol peak and hold promise in the management of adrenal insufficiency.

8.
J Trop Med ; 2018: 1494957, 2018.
Article in English | MEDLINE | ID: mdl-29951101

ABSTRACT

The quality of 68 samples of 15 different essential children's medicines sold in licensed medicine outlets in the Ashanti Region, Ghana, was evaluated. Thirty-two (47.1%) of the medicines were imported, mainly from India (65.6%) and the United Kingdom (28.1%), while 36 (52.9%) were locally manufactured. The quality of the medicines was assessed using content of active pharmaceutical ingredient (API), pH, and microbial limit tests, and the results were compared with pharmacopoeial standards. Twenty-six (38.2%) of the samples studied passed the official content of API test while 42 (61.8%) failed. Forty-nine (72.1%) of the samples were compliant with official specifications for pH while 19 (27.9%) were noncompliant. Sixty-six (97.1%) samples passed the microbial load and content test while 2 (2.9%) failed. Eighteen (26.5%) samples passed all the three quality evaluation tests, while one (1.5%) sample (CFX1) failed all the tests. All the amoxicillin suspensions tested passed the three evaluation tests. All the ciprofloxacin, cotrimoxazole, flucloxacillin, artemether-lumefantrine, multivitamin, and folic acid samples failed the content of API test and are substandard. The overall API failure rate for imported products (59.4%) was comparable to locally manufactured (63.9%) samples. The results highlight the poor quality of the children's medicines studied and underscore the need for regular pharmacovigilance and surveillance systems to fight this menace.

9.
J Pharm (Cairo) ; 2017: 2326912, 2017.
Article in English | MEDLINE | ID: mdl-28781909

ABSTRACT

The disintegrant potential of native starches of five new cassava (Manihot esculenta Crantz.) varieties developed by the Crops Research Institute of Ghana (CRIG) was studied in paracetamol tablet formulations. The yield of the starches ranged from 8.0 to 26.7%. The starches were basic (pH: 8.1-9.9), with satisfactory moisture content (≤15%), swelling capacity (≥20%), ash values (<1%), flow properties, and negligible toxic metal ion content, and compatible with the drug. The tensile strength (Ts ), crushing strength (Cs ), and friability (Ft ) of tablets containing 5-10% w/w of the cassava starches were similar (p > 0.05) to those containing maize starch BP. The disintegration times of the tablets decreased with increase in concentration of the cassava starches. The tablets passed the disintegration test (DT ≤ 15 min) and exhibited faster disintegration times (p > 0.05) than those containing maize starch BP. The disintegration efficiency ratio (DER) and the disintegration parameter DER c of the tablets showed that cassava starches V20, V40, and V50 had better disintegrant activity than maize starch BP. The tablets passed the dissolution test for immediate release tablets (≥70% release in 45 min) with dissolution rates similar to those containing maize starch BP.

10.
Saudi Pharm J ; 24(1): 82-91, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26903772

ABSTRACT

The study was aimed at developing extended release matrix tablets of poorly water-soluble diclofenac sodium and highly water-soluble metformin hydrochloride by direct compression using cashew gum, xanthan gum and hydroxypropylmethylcellulose (HPMC) as release retardants. The suitability of light grade cashew gum as a direct compression excipient was studied using the SeDeM Diagram Expert System. Thirteen tablet formulations of diclofenac sodium (∼100 mg) and metformin hydrochloride (∼200 mg) were prepared with varying amounts of cashew gum, xanthan gum and HPMC by direct compression. The flow properties of blended powders and the uniformity of weight, crushing strength, friability, swelling index and drug content of compressed tablets were determined. In vitro drug release studies of the matrix tablets were conducted in phosphate buffer (diclofenac: pH 7.4; metformin: pH 6.8) and the kinetics of drug release was determined by fitting the release data to five kinetic models. Cashew gum was found to be suitable for direct compression, having a good compressibility index (ICG) value of 5.173. The diclofenac and metformin matrix tablets produced generally possessed fairly good physical properties. Tablet swelling and drug release in aqueous medium were dependent on the type and amount of release retarding polymer and the solubility of drug used. Extended release of diclofenac (∼24 h) and metformin (∼8-12 h) from the matrix tablets in aqueous medium was achieved using various blends of the polymers. Drug release from diclofenac tablets fitted zero order, first order or Higuchi model while release from metformin tablets followed Higuchi or Hixson-Crowell model. The mechanism of release of the two drugs was mostly through Fickian diffusion and anomalous non-Fickian diffusion. The study has demonstrated the potential of blended hydrophilic polymers in the design and optimization of extended release matrix tablets for soluble and poorly soluble drugs by direct compression.

11.
Pharm Dev Technol ; 18(4): 866-76, 2013.
Article in English | MEDLINE | ID: mdl-22436019

ABSTRACT

The study was aimed at determining the acid dissociation constant of cryptolepine hydrochloride and its degradation under stressed conditions. The pKa was determined using buffers in the pH range 10.4-11.6 by spectrophotometry at controlled measurement temperature (20 ± 0.5°C). The stability of the compound was investigated under various stressed conditions including neutral, acid, alkaline, light, dry heat and oxidation at different temperatures. Degradation products were analysed by HPLC. The calculated pKa values (uncorrected and corrected for ionic strength) were 11.09 ± 0.03 and 10.99 ± 0.05, respectively. A graphical approach yielded an uncorrected pKa value of 11.07. Degradation of the compound in water, 0.1 M HCl, 0.1 M NaOH and 3% hydrogen peroxide followed a first order reaction. With proper temperature control and maintenance of uniform ionic strength, a reproducible pKa of cryptolepine is obtainable by spectrophotometry. The compound was found to be highly susceptible to oxidation and relatively stable in neutral and acidic conditions but less so in a basic medium. There were no significant changes in concentration of samples exposed to light and dry heat at 60°C over the study period.


Subject(s)
Antimalarials/chemistry , Chemistry, Pharmaceutical , Indole Alkaloids/chemistry , Quinolines/chemistry , Chromatography, High Pressure Liquid , Drug Stability , Drug Storage , Hydrogen-Ion Concentration , Osmolar Concentration , Oxidation-Reduction , Reproducibility of Results , Solvents/chemistry , Spectrophotometry , Temperature
12.
AAPS PharmSciTech ; 13(2): 568-81, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22477022

ABSTRACT

Cryptolepine hydrochloride-loaded gelatine nanoparticles were developed and characterised as a means of exploring formulation techniques to improve the pharmaceutic profile of the compound. Cryptolepine hydrochloride-loaded gelatine-type (A) nanoparticles were developed base on the double desolvation approach. After optimisation of formulation parameters including temperature, stirring rate, incubation time polymer and cross-linker (glutaraldehyde) concentrations, the rest of the study was conducted at two different formulation pH values (2.5 and 11.0) and by two different approaches to drug loading. Three cryoprotectants--sucrose, glucose and mannitol--were investigated for possible use for the preparation of freeze-dried samples. Nanoparticles with desired size mostly less than 350 nm and zeta potential above ±20 were obtained when formulation pH was between 2.5 and 5 and above 9. Entrapment efficiency was higher at pH 11.0 than pH 2.5 and for products formulated when drug was loaded during the second desolvation stage compared to when drug was loaded onto pre-formed nanoparticles. Further investigation of pH effect showed a new isoelectric point of 6.23-6.27 at which the zeta potential of nanoparticles was zero. Sucrose and glucose were effective in low concentrations as cryoprotectants. The best formulation produced an EC(50) value of 227.4 µM as a haemolytic agent compared to 51.61 µM by the free compound which is an indication of reduction in haemolytic side effect. There was sustained released of the compound from all formulation types over a period of 192 h. Stability data indicated that the nanosuspension and freeze-dried samples were stable at 4 and 25°C, respectively, over a 52-week period, but the former was less stable at room temperature. In conclusion, cryptolepine hydrochloride-loaded gelatine nanoparticles exhibited reduced haemolytic effect compared to the pure compound and can be developed further for parenteral delivery.


Subject(s)
Antimalarials/toxicity , Drug Carriers , Gelatin/chemistry , Hemolysis/drug effects , Indole Alkaloids/toxicity , Nanoparticles , Quinolines/toxicity , Animals , Antimalarials/chemistry , Chemistry, Pharmaceutical , Cross-Linking Reagents/chemistry , Cryoprotective Agents/chemistry , Delayed-Action Preparations , Dose-Response Relationship, Drug , Drug Stability , Freeze Drying , Glucose/chemistry , Glutaral/chemistry , Hydrogen-Ion Concentration , Indole Alkaloids/chemistry , Isoelectric Point , Kinetics , Mannitol/chemistry , Nanotechnology , Particle Size , Quinolines/chemistry , Rats , Solubility , Sucrose/chemistry , Technology, Pharmaceutical/methods , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...