Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 381: 112438, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31857149

ABSTRACT

Comparisons of target-based reaching vs memory-based (pantomime) reaching have been used to obtain insight into the visuomotor control of reaching. The present study examined the contribution of gaze anchoring, reaching to a target that is under continuous gaze, to both target-based and memory-based reaching. Participants made target-based reaches for discs located on a table or food items located on a pedestal or they replaced the objects. They then made memory-based reaches in which they pantomimed their target-based reaches. Participants were fitted with hand sensors for kinematic tracking and an eye tracker to monitor gaze. When making target-based reaches, participants directed gaze to the target location from reach onset to offset without interrupting saccades. Similar gaze anchoring was present for memory-based reaches when the surface upon which the target had been placed remained. When the target and its surface were both removed there was no systematic relationship between gaze and the reach. Gaze anchoring was also present when participants replaced a target on a surface, a movement featuring a reach but little grasp. That memory-based reaches can be either gaze anchor-associated or gaze anchor-independent is discussed in relation to contemporary views of the neural control of reaching.


Subject(s)
Memory/physiology , Movement/physiology , Psychomotor Performance/physiology , Attention , Biomechanical Phenomena , Eye Movement Measurements , Female , Fixation, Ocular , Hand Strength , Humans , Male , Young Adult
2.
Exp Brain Res ; 236(4): 1091-1103, 2018 04.
Article in English | MEDLINE | ID: mdl-29441469

ABSTRACT

Reach-to-grasp movements feature the integration of a reach directed by the extrinsic (location) features of a target and a grasp directed by the intrinsic (size, shape) features of a target. The action-perception theory suggests that integration and scaling of a reach-to-grasp movement, including its trajectory and the concurrent digit shaping, are features that depend upon online action pathways of the dorsal visuomotor stream. Scaling is much less accurate for a pantomime reach-to-grasp movement, a pretend reach with the target object absent. Thus, the action-perception theory proposes that pantomime movement is mediated by perceptual pathways of the ventral visuomotor stream. A distinguishing visual feature of a real reach-to-grasp movement is gaze anchoring, in which a participant visually fixates the target throughout the reach and disengages, often by blinking or looking away/averting the head, at about the time that the target is grasped. The present study examined whether gaze anchoring is associated with pantomime reaching. The eye and hand movements of participants were recorded as they reached for a ball of one of three sizes, located on a pedestal at arms' length, or pantomimed the same reach with the ball and pedestal absent. The kinematic measures for real reach-to-grasp movements were coupled to the location and size of the target, whereas the kinematic measures for pantomime reach-to-grasp, although grossly reflecting target features, were significantly altered. Gaze anchoring was also tightly coupled to the target for real reach-to-grasp movements, but there was no systematic focus for gaze, either in relation with the virtual target, the previous location of the target, or the participant's reaching hand, for pantomime reach-to-grasp. The presence of gaze anchoring during real vs. its absence in pantomime reach-to-grasp supports the action-perception theory that real, but not pantomime, reaches are online visuomotor actions and is discussed in relation with the neural control of real and pantomime reach-to-grasp movements.


Subject(s)
Attention/physiology , Eye Movements/physiology , Hand Strength/physiology , Movement/physiology , Psychomotor Performance/physiology , Biomechanical Phenomena/physiology , Female , Humans , Male , Visual Perception/physiology , Young Adult
3.
J Vis Exp ; (131)2018 01 15.
Article in English | MEDLINE | ID: mdl-29364272

ABSTRACT

Prehension, the act of reaching to grasp an object, is central to the human experience. We use it to feed ourselves, groom ourselves, and manipulate objects and tools in our environment. Such behaviors are impaired by many sensorimotor disorders, yet our current understanding of their neural control is far from complete. Current technologies for investigating human reach-to-grasp movements often utilize motion tracking systems that can be expensive, require the attachment of markers or sensors to the hands, impede natural movement and sensory feedback, and provide kinematic output that can be difficult to interpret. While generally effective for studying the stereotypical reach-to-grasp movements of healthy sighted adults, many of these technologies face additional limitations when attempting to study the unpredictable and idiosyncratic reach-to-grasp movements of young infants, unsighted adults, and patients with neurological disorders. Thus, we present a novel, inexpensive, and highly reliable yet flexible protocol for quantifying the temporal and kinematic structure of idiosyncratic reach-to-grasp movements in humans. High speed video cameras capture multiple views of the reach-to-grasp movement. Frame-by-frame video analysis is then used to document the timing and magnitude of pre-defined behavioral events such as movement start, collection, maximum height, peak aperture, first contact, and final grasp. The temporal structure of the movement is reconstructed by documenting the relative frame number of each event while the kinematic structure of the hand is quantified using the ruler or measure function in photo editing software to calibrate 2 dimensional linear distances between two body parts or between a body part and the target. Frame-by-frame video analysis can provide a quantitative and comprehensive description of idiosyncratic reach-to-grasp movements and will enable researchers to expand their area of investigation to include a greater range of naturalistic prehensile behaviors, guided by a wider variety of sensory modalities, in both healthy and clinical populations.


Subject(s)
Hand Strength/physiology , Psychomotor Performance/physiology , Video Recording/methods , Female , Humans , Male
4.
Behav Brain Res ; 341: 37-44, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29229548

ABSTRACT

Skilled reaching for food by the laboratory mouse has the appearance of an action pattern with a distinctive syntax in which ten submovements occur in an orderly sequence. A mouse locates the food by Sniffing, Lifts, Aims, Advances, and Shapes the hand to Pronate it over a food target that it Grasps, Retracts, and Withdraws to Release to its mouth for eating. The structure of the individual actions in the chain are useful for the study of the mouse motor system and contribute to the use of the mouse as a model of human neurological conditions. The present study describes tongue protrusions that modify the syntax of reaching by occurring at the point of the reaching action at which the hand is at the Aim position. Tongue protrusions were not related to reaching success and were not influenced by training. Tongue protrusions were more likely to occur in the presence of a food target than with reaches made when food was absent. There were vast individual differences; some mice always make tongue protrusions while other mice never make tongue protrusions. That the syntax of reaching can be altered by the insertion of a surrogate (co-occurring) movement adds to a growing body of evidence that skilled reaching is assembled from a number of relatively independent actions, each with its own sensorimotor control that are subject to central modulation. That tongue and hand reaching movements can co-occur suggests a privileged relation between neural mechanisms that control movements of the tongue and hand.


Subject(s)
Appetitive Behavior , Forelimb , Motor Skills , Tongue , Animals , Appetitive Behavior/physiology , Biomechanical Phenomena , Food , Forelimb/physiology , Male , Mice, Inbred C57BL , Motor Skills/physiology , Smell , Tongue/physiology
5.
Behav Brain Res ; 337: 80-90, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-28964910

ABSTRACT

Rodents display a spontaneous "order-common" pattern of food eating: they pick up food using the mouth, sit on their haunches, and transfer the food to the hands for handling/chewing. The present study examines how this pattern of behaviour influences performance on "skilled-reaching" tasks, in which mice purchase food with a single hand. Here five types of withdraw movement, the retraction of the hand, in three reaching tasks: freely-moving single-pellet, head-fixed single-pellet, and head-fixed pasta-eating is described. The withdraw movement varied depending upon whether a reach was anticipatory, no food present, or was unsuccessful or successful with food present. Ease of withdraw is dependent upon the extent to which animals used order-common movements. For freely-moving mice, a hand-to-mouth movement was assisted by a mouth-to-hand movement and food transfer to the mouth depended upon a sitting posture and using the other hand to assist food holding, both order-common movements. In the head-fixed single-pellet task, with postural and head movements prevented, withdraw was made with difficulty and tongue protrude movements assisted food transfer to the mouth once the hand reached the mouth. Only when a head-fixed mouse made a bilateral hand-to-mouth movement, a component of order-common eating, was the withdraw movement made with ease. The results are discussed with respect to the use of order-common movements in skilled-reaching tasks and with respect to the optimal design of tasks used to assess rodent skilled hand movement.


Subject(s)
Eating/physiology , Feeding Behavior/physiology , Movement/physiology , Psychomotor Performance/physiology , Wakefulness/physiology , Animals , Biomechanical Phenomena , Conditioning, Operant , Forelimb/physiology , Male , Mice , Mice, Inbred C57BL , Reward , Tongue/physiology , Video Recording
6.
Sci Rep ; 7(1): 10987, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887566

ABSTRACT

Mice are adept in the use of their hands for activities such as feeding, which has led to their use in investigations of the neural basis of skilled-movements. We describe the syntactic organization of pasta-eating and the structure of hand movements used for pasta manipulation by the head-fixed mouse. An ethogram of mice consuming pieces of spaghetti reveals that they eat in bite/chew bouts. A bout begins with pasta lifted to the mouth and then manipulated with hand movements into a preferred orientation for biting. Manipulation involves many hand release-reach movements, each with a similar structure. A hand is advanced from a digit closed and flexed (collect) position to a digit extended and open position (overgrasp) and then to a digit closed and flexed (grasp) position. Reach distance, hand shaping, and grasp patterns featuring precision grasps or whole hand grasps are related. To bite, mice display hand preference and asymmetric grasps; one hand (guide grasp) directs food into the mouth and the other stabilizes the pasta for biting. When chewing after biting, the hands hold the pasta in a symmetric resting position. Pasta-eating is organized and features structured hand movements and so lends itself to the neural investigation of skilled-movements.


Subject(s)
Behavior, Animal , Feeding Behavior , Animals , Male , Mice , Psychomotor Performance
7.
Exp Brain Res ; 235(6): 1919-1932, 2017 06.
Article in English | MEDLINE | ID: mdl-28315945

ABSTRACT

Multiple motor channel (MMC) theory of neocortical organization proposes that complex movements, such as reaching for a food item to eat, are produced by the coordinated action of separate neural channels. For example, the human reach-to-grasp act is mediated by two visuo-parieto-motor cortex channels, one for the reach and one for the grasp. The present analysis asked whether there is a similar organization of reach-and-grasp movements in the mouse. The reach-to-eat movements of the same mice were examined from high-shutter speed, frame-by-frame video analysis in three tasks in which the mice obtained equivalent success scores: when freely-moving reaching for food pellets, when head-fixed reaching for food pellets, and when head-fixed reaching for pieces of pasta. To reach, the mice used egocentric cues to vary upper arm movements in a task-appropriate manner to place an open hand on the food or to locate the food using a "touch-release-grasp" strategy. Although mice could not hand-shape offline when reaching, they could hand-shape using online touch-related cues from the mouth to manipulate the food at the mouth. That the reach can be performed offline in relation to egocentric cues whereas hand shaping for the grasp requires online cues supports the idea that for the mouse, as for primates, the reach and grasp are separate acts. The results are further discussed in relation to the use of the head-fixed behavioral procedure to identify the independent neural substrates of the reach and the grasp using mesoscale stimulation/imaging methods.


Subject(s)
Behavior, Animal/physiology , Motor Activity/physiology , Neocortex/physiology , Psychomotor Performance/physiology , Animals , Head , Male , Mice , Mice, Inbred C57BL
8.
Exp Brain Res ; 234(11): 3291-3303, 2016 11.
Article in English | MEDLINE | ID: mdl-27449931

ABSTRACT

The Dual Visuomotor Channel theory of reaching proposes that a reach-to-grasp act integrates a Reach, directed toward the extrinsic properties of the target (location), and a Grasp, directed toward the intrinsic properties of the target (size and shape). Previous studies of reach-to-grasp report that the Grasp is altered in pantomime tasks made from a starting position with digit 1 and digit 2 closed and proximal to the target. The present study extends the analysis of real versus pantomime reaching to a task that featured both a Reach and a Grasp, having a starting position with the hand open and proximal to the body. For a real reach, seated participants reached for a doughnut ball (food item) located on a pedestal at arms distance, with the intent of bringing the doughnut ball to the mouth for eating. Participants also made four pantomime reaches with: (1) the doughnut ball removed from the pedestal, (2) the doughnut ball and pedestal moved to the side of the reach location, (3) the doughnut ball and pedestal absent, and (4) the participants wearing vision-occluding glasses. There were two main findings. First, the presence of task-related cues, platform, doughnut ball, and room influenced the kinematics of the Reach and Grasp. Second, the compound structure of a real reach, in which flexion/extension of the arm featured in the Reach and flexion/extension of the digits featured in the Grasp are out of phase, changed in pantomime such that these features of Reach and Grasp became in phase. The results show that pantomime reaching is influenced not only by task-related percepts but also by central mechanisms ordinarily related to integrating the Reach and the Grasp.


Subject(s)
Hand Strength/physiology , Movement/physiology , Pronation/physiology , Psychomotor Performance/physiology , Range of Motion, Articular/physiology , Visual Perception/physiology , Adult , Analysis of Variance , Biomechanical Phenomena , Female , Hand , Humans , Male , Time Factors , Video Recording , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...