Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(4): 4398-4409, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36743038

ABSTRACT

Nanodiamonds (NDs) are emerging with great potential in biomedical applications like biomarking through fluorescence and magnetic resonance imaging (MRI), targeted drug delivery, and cancer therapy. The magnetic and optical properties of NDs could be tuned by selective doping. Therefore, we report multifunctional manganese-incorporated NDs (Mn-NDs) fabricated by Mn ion implantation. The fluorescent properties of Mn-NDs were tuned by inducing the defects by ion implantation and enhancing the residual nitrogen vacancy density achieved by a two-step annealing process. The cytotoxicity of Mn-NDs was investigated using NCTC clone 929 cells, and the results revealed no cytotoxicity effect. Mn-NDs have demonstrated dual mode contrast enhancement for both T 1- and T 2-weighted in vitro MR imaging. Furthermore, Mn-NDs have illustrated a significant increase in longitudinal relaxivity (fivefold) and transversal relaxivity (17-fold) compared to the as-received NDs. Mn-NDs are employed to investigate their ability for in vivo MR imaging by intraperitoneal (ip) injection of Mn-NDs into mice with liver tumors. After 2.5 h of ip injection, the enhancement of contrast in T 1- and T 2-weighted images has been observed via the accumulation of Mn-NDs in liver tumors of mice. Therefore, Mn-NDs have great potential for in vivo imaging by MR imaging in cancer therapy.

2.
Nanomaterials (Basel) ; 12(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35957035

ABSTRACT

Diamond particles have great potential to enhance the mechanical, optical, and thermal properties of diamond-polymer composites. However, the improved properties of diamond-polymer composites depend on the size, dispersibility, and concentration of diamond particles. In the present study, diamond-polymer composites were prepared by adding the microdiamond particles (MDPs) with different concentrations (0.2-1 wt.%) into polymers (acrylate resins) and then subjected to a photocuring process. The surface morphology and topography of the MDPs-polymer composites demonstrated a uniform high-density distribution of MDPs for one wt.% MPDs. Thermogravimetric analysis was employed to investigate the thermal stability of the MDPs-polymer composites. The addition of MDPs has significantly influenced the polymers' thermal degradation. Absorption and emission spectra of thin layers were recorded through UV/Vis spectrophotometry and spectrofluorimetry. The obtained results revealed a significant increase in the fluorescence intensity of MDPs-polymer composites (at 1 wt.% of MDPs, a 1.5×, 2×, and 5× increase in fluorescence was observed for MDPs-green, MDPs-amber daylight, and MDPs-red resin, respectively) compared with the reference polymer resins. The obtained results of this work show the new pathways in producing effective and active 3D-printed optical elements.

3.
Nanotechnology ; 33(12)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34879361

ABSTRACT

Boron doped diamond (BDD) has great potential in electrical, and electrochemical sensing applications. The growth parameters, substrates, and synthesis method play a vital role in the preparation of semiconducting BDD to metallic BDD. Doping of other elements along with boron (B) into diamond demonstrated improved efficacy of B doping and exceptional properties. In the present study, B and nitrogen (N) co-doped diamond has been synthesized on single crystalline diamond (SCD) IIa and SCD Ib substrates in a microwave plasma-assisted chemical vapor deposition process. The B/N co-doping into CVD diamond has been conducted at constant N flow of N/C âˆ¼ 0.02 with three different B/C doping concentrations of B/C âˆ¼ 2500 ppm, 5000 ppm, 7500 ppm. Atomic force microscopy topography depicted the flat and smooth surface with low surface roughness for low B doping, whereas surface features like hillock structures and un-epitaxial diamond crystals with high surface roughness were observed for high B doping concentrations. KPFM measurements revealed that the work function (4.74-4.94 eV) has not varied significantly for CVD diamond synthesized with different B/C concentrations. Raman spectroscopy measurements described the growth of high-quality diamond and photoluminescence studies revealed the formation of high-density nitrogen-vacancy centers in CVD diamond layers. X-ray photoelectron spectroscopy results confirmed the successful B doping and the increase in N doping with B doping concentration. The room temperature electrical resistance measurements of CVD diamond layers (B/C âˆ¼ 7500 ppm) have shown the low resistance value âˆ¼9.29 Ω for CVD diamond/SCD IIa, and the resistance value âˆ¼16.55 Ω for CVD diamond/SCD Ib samples.

4.
ACS Appl Mater Interfaces ; 11(28): 25388-25398, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31260239

ABSTRACT

Microstructural evolution of nanocrystalline diamond (NCD) nanoneedles owing to the addition of methane and nitrogen in the reactant gases is systematically addressed. It has been determined that varying the concentration of CH4 in the CH4/H2/N2 plasma is significant to tailor the morphology and microstructure of NCD films. While NCD films grown with 1% CH4 in a CH4/H2/N2 (3%) plasma contain large diamond grains, the microstructure changed considerably for NCD films grown using 5% (or 10%) CH4, ensuing in nanosized diamond grains. For 15% CH4-grown NCD films, a well-defined nanoneedle structure evolves. These NCD nanoneedle films contain sp3 phase diamond, sheathed with sp2-bonded graphitic phases, achieving a low resistivity of 90 Ω cm and enhanced field electron emission (FEE) properties, namely, a low turn-on field of 4.3 V/µm with a high FEE current density of 3.3 mA/cm2 (at an applied field of 8.6 V/µm) and a significant field enhancement factor of 3865. Furthermore, a microplasma device utilizing NCD nanoneedle films as cathodes can trigger a gas breakdown at a low threshold field of 3600 V/cm attaining a high plasma illumination current density of 1.14 mA/cm2 at an applied voltage of 500 V, and a high plasma lifetime stability of 881 min is evidenced. The optical emission spectroscopy studies suggest that the C2, CN, and CH species in the growing plasma are the major causes for the observed microstructural evolution in the NCD films. However, the increase in substrate temperature to ∼780 °C due to the incorporation of 15% CH4 in the CH4/H2/N2 plasma is the key driver resulting in the origin of nanoneedles in NCD films. The outstanding optoelectronic characteristics of these nanoneedle films make them suitable as cathodes in high-brightness display panels.

5.
Sci Rep ; 9(1): 1297, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718680

ABSTRACT

We demonstrate fluorescent Fe embedded magnetic nanodiamonds by ion implantation and two-step annealing. The diamond characteristics with a highly ordered core and a graphite surface layer are maintained after the implantation process. After the two-step annealing process, a bright red fluorescence associated with nitrogen-vacancy centers is observed. These new fluorescent magnetic nanodiamonds can be used as a dual-function in vivo tracer with both optical visibility and magnetic resonance imaging capabilities. They are potentially useful for the more advanced in vivo biological and medical applications.

6.
Sci Rep ; 8(1): 7058, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29728582

ABSTRACT

We report in this paper a new MRI contrast agent based on magnetic nanodiamonds fabricated by Fe ion implantation. The Fe atoms that are implanted into the nanodiamonds are not in direct contact with the outside world, enabling this new contrast agent to be free from cell toxicity. The image enhancement was shown clearly through T2 weighted images. The concentration dependence of the T2 relaxation time gives a relaxivity value that is about seven times that of the regular non-magnetic nanodiamonds. Cell viability study has also been performed. It was shown that they were nearly free from cytotoxicity independent of the particle concentration used. The imaging capability demonstrated here adds a new dimension to the medical application of nanodiamonds. In the future one will be able to combine this capability of magnetic nanodiamonds with other functions through surface modifications to perform drug delivery, targeted therapy, localized thermal treatment and diagnostic imaging at the same time.

7.
Nanoscale ; 10(3): 1345-1355, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29296984

ABSTRACT

Carbon nanomaterials such as nanotubes, nanoflakes/nanowalls, and graphene have been used as electron sources due to their superior field electron emission (FEE) characteristics. However, these materials show poor stability and short lifetimes, which prevent their use in practical device applications. The aim of this study was to find an innovative nanomaterial possessing both high robustness and reliable FEE behavior. Herein, a hybrid structure of self-organized multi-layered graphene (MLG)-boron doped diamond (BDD) nanowall materials with superior FEE characteristics was successfully synthesized using a microwave plasma enhanced chemical vapor deposition process. Transmission electron microscopy reveals that the as-prepared carbon clusters have a uniform, dense, and sharp nanowall morphology with sp3 diamond cores encased by an sp2 MLG shell. Detailed nanoscale investigations conducted using peak force-controlled tunneling atomic force microscopy show that each of the core-shell structured carbon cluster fields emits electrons equally well. The MLG-BDD nanowall materials show a low turn-on field of 2.4 V µm-1, a high emission current density of 4.2 mA cm-2 at an applied field of 4.0 V µm-1, a large field enhancement factor of 4500, and prominently high lifetime stability (lasting for 700 min), which demonstrate the superiority of these materials over other hybrid nanostructured materials. The potential of these MLG-BDD hybrid nanowall materials in practical device applications was further illustrated by the plasma illumination behavior of a microplasma device with these materials as the cathode, where a low threshold voltage of 330 V (low threshold field of 330 V mm-1) and long plasma stability of 358 min were demonstrated. The fabrication of these hybrid nanowalls is straight forward and thereby opens up a pathway for the advancement of next-generation cathode materials for high brightness electron emission and microplasma-based display devices.

8.
ACS Omega ; 3(8): 9956-9965, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459124

ABSTRACT

The impact of lithium-ion implantation and postannealing processes on improving the electrical conductivity and field electron emission (FEE) characteristics of nitrogen-doped nanocrystalline diamond (nNCD) films was observed to be distinctly different from those of undoped NCD (uNCD) films. A high-dose Li-ion implantation induced the formation of electron trap centers inside the diamond grains and amorphous carbon (a-C) phases in grain boundaries for both types of NCD films. Postannealing at 1000 °C healed the defects, eliminated the electron trap centers, and converted the a-C into nanographitic phases. The abundant nanographitic phases in the grain boundaries of the nNCD films as compared to the uNCD films made an interconnected path for effectual electron transport and consequently enhanced the FEE characteristics of nNCD films.

9.
Sci Rep ; 6: 29444, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404130

ABSTRACT

Field electron emission (FEE) properties of vertically aligned hexagonal boron nitride nanowalls (hBNNWs) grown on Si have been markedly enhanced through the use of nitrogen doped nanocrystalline diamond (nNCD) films as an interlayer. The FEE properties of hBNNWs-nNCD heterostructures show a low turn-on field of 15.2 V/µm, a high FEE current density of 1.48 mA/cm(2) and life-time up to a period of 248 min. These values are far superior to those for hBNNWs grown on Si substrates without the nNCD interlayer, which have a turn-on field of 46.6 V/µm with 0.21 mA/cm(2) FEE current density and life-time of 27 min. Cross-sectional TEM investigation reveals that the utilization of the diamond interlayer circumvented the formation of amorphous boron nitride prior to the growth of hexagonal boron nitride. Moreover, incorporation of carbon in hBNNWs improves the conductivity of hBNNWs. Such a unique combination of materials results in efficient electron transport crossing nNCD-to-hBNNWs interface and inside the hBNNWs that results in enhanced field emission of electrons. The prospective application of these materials is manifested by plasma illumination measurements with lower threshold voltage (370 V) and longer life-time, authorizing the role of hBNNWs-nNCD heterostructures in the enhancement of electron emission.

10.
ACS Appl Mater Interfaces ; 7(49): 27526-38, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26600097

ABSTRACT

An electron field emitter with superior electron field emission (EFE) properties and improved lifetime stability is being demonstrated via the combination of carbon nanotubes and the CH4/N2 plasma grown ultrananocrystalline diamond (N-UNCD) films. The resistance of the carbon nanotubes to plasma ion bombardment is improved by the formation of carbon nanocones on the side walls of the carbon nanotubes, thus forming strengthened carbon nanotubes (s-CNTs). The N-UNCD films can thus be grown on s-CNTs, forming N-UNCD/s-CNTs carbon nanocomposite materials. The N-UNCD/s-CNTs films possess good conductivity of σ = 237 S/cm and marvelous EFE properties, such as low turn-on field of (E0) = 3.58 V/µm with large EFE current density of (J(e)) = 1.86 mA/cm(2) at an applied field of 6.0 V/µm. Moreover, the EFE emitters can be operated under 0.19 mA/cm(2) for more than 350 min without showing any sign of degradation. Such a superior EFE property along with high robustness characteristic of these combination of materials are not attainable with neither N-UNCD films nor s-CNTs films alone. Transmission electron microscopic investigations indicated that the N-UNCD films contain needle-like diamond grains encased in a few layers of nanographitic phase, which enhanced markedly the transport of electrons in the N-UNCD films. Moreover, the needle-like diamond grains were nucleated from the s-CNTs without the necessity of forming the interlayer that facilitate the transport of electrons crossing the diamond-to-Si interface. Both these factors contributed to the enhanced EFE behavior of the N-UNCD/s-CNTs films.

11.
ACS Appl Mater Interfaces ; 7(14): 7732-40, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25793425

ABSTRACT

We improved the electron field emission properties of ultrananocrystalline diamond (UNCD) films grown on Si-tip arrays by using the carbon nanotubes (CNTs) as interlayer and post-treating the films in CH4/Ar/H2 plasma. The use of CNTs interlayer effectively suppresses the presence of amorphous carbon in the diamond-to-Si interface that enhances the transport of electrons from Si, across the interface, to diamond. The post-treatment process results in hybrid-granular-structured diamond (HiD) films via the induction of the coalescence of the ultrasmall grains in these films that enhanced the conductivity of the films. All these factors contribute toward the enhancement of the electron field emission (EFE) process for the HiDCNT/Si-tip emitters, with low turn-on field of E0 = 2.98 V/µm and a large current density of 1.68 mA/cm(2) at an applied field of 5.0 V/µm. The EFE lifetime stability under an operation current of 6.5 µA was improved substantially to τHiD/CNT/Si-tip = 365 min. Interestingly, these HiDCNT/Si-tip materials also show enhanced plasma illumination behavior, as well as improved robustness against plasma ion bombardment when they are used as the cathode for microplasma devices. The study concludes that the use of CNT interlayers not only increase the potential of these materials as good EFE emitters, but also prove themselves to be good microplasma devices with improved performance.

12.
Nanoscale ; 7(10): 4377-85, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25684389

ABSTRACT

Hybridization of gold nanoparticles in the ultrananocrystalline diamond materials improves the electrical conductivity of the materials to a high level of 230 (Ω cm)(-1) with a sheet carrier concentration of 8.9 × 10(20) cm(-2). These hybrid materials show enhanced electron field emission (EFE) properties, viz. a low turn-on field of 2.1 V µm(-1) with a high EFE current density of 5.3 mA cm(-2) (at an applied field of 4.9 V µm(-1)) and the life-time stability up to a period of 372 min. The fabrication of these hybrid materials with high conductivity and superior EFE behaviors is a direct and simple process which opens new prospects in flat panel displays and high brightness electron sources.

13.
ACS Appl Mater Interfaces ; 6(16): 14543-51, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25093962

ABSTRACT

Enhanced electron field emission (EFE) properties due to hydrogen post-treatment at 600 °C have been observed for ultrananocrystalline diamond (UNCD) films. The EFE properties of H2-gas-treated UNCD films could be turned on at a low field of 5.3 V/µm, obtaining an EFE current density of 3.6 mA/cm(2) at an applied field of 11.7 V/µm that is superior to those of UNCD films treated with H2 plasma. Transmission electron microscopic investigations revealed that H2 plasma treatment induced amorphous carbon (a-C) (and graphitic) phases only on the surface region of the UNCD films but the interior region of the UNCD films still contained very small amounts of a-C (and graphitic) grain boundary phases, resulting in a resistive transport path and inferior EFE properties. On the other hand, H2 gas treatment induces a-C (and graphitic) phases along the grain boundary throughout the thickness of the UNCD films, resulting in creation of conduction channels for the electrons to transport from the bottom of the films to the top and hence the superior EFE properties.

14.
ACS Appl Mater Interfaces ; 6(14): 11589-97, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24955653

ABSTRACT

The enhanced lifetime stability for the carbon nanotubes (CNTs) by coating hybrid granular structured diamond (HiD) films on Au-decorated CNTs/Si using a two-step microwave plasma enhanced chemical vapor deposition process was reported. Electron field emission (EFE) properties of HiD/Au/CNTs emitters show a low turn-on field (E0) of 3.50 V/µm and a high emission current density (Je) of 0.64 mA/cm(2) at an applied field of 5.0 V/µm. There is no notable current degradation or fluctuation over a period of τ(HiD/Au/CNTs) = 360 min for HiD/CNTs EFE emitters tested under a constant current of 4.5 µA. The robustness of the HiD/CNTs EFE emitter is overwhelmingly superior to that of bare CNTs EFE emitters (τ(CNTs) = 30 min), even though the HiD/Au/CNTs do not show the same good EFE properties as CNTs, which are E0 = 0.73 V/µm and Je = 1.10 mA/cm(2) at 1.05 V/µm. Furthermore, the plasma illumination (PI) property of a parallel-plate microplasma device fabricated using the HiD/Au/CNTs as a cathode shows a high Ar plasma current density of 1.76 mA/cm(2) at an applied field of 5600 V/cm with a lifetime of plasma stability of about 209 min, which is markedly better than the devices utilizing bare CNTs as a cathode. The CNT emitters coated with diamond films possessing marvelous EFE and PI properties with improved lifetime stability have great potential for the applications as cathodes in flat-panel displays and microplasma display devices.

15.
ACS Appl Mater Interfaces ; 6(13): 10566-75, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24945940

ABSTRACT

Microstructural evolution of ultrananocrystalline diamond (UNCD) films in the bias-enhanced nucleation and growth (BEN-BEG) process in CH4/Ar plasma is systematically investigated. The BEN-BEG UNCD films possess higher growth rate and better electron field emission (EFE) and plasma illumination (PI) properties than those of the films grown without bias. Transmission electron microscopy investigation reveals that the diamond grains are formed at the beginning of growth for films grown by applying the bias voltage, whereas the amorphous carbon forms first and needs more than 30 min for the formation of diamond grains for the films grown without bias. Moreover, the application of bias voltage stimulates the formation of the nanographite phases in the grain boundaries of the UNCD films such that the electrons can be transported easily along the graphite phases to the emitting surface, resulting in superior EFE properties and thus leading to better PI behavior. Interestingly, the 10 min grown UNCD films under bias offer the lowest turn-on field of 4.2 V/µm with the highest EFE current density of 2.6 mA/cm(2) at an applied field of 7.85 V/µm. Such superior EFE properties attained for 10 min bias grown UNCD films leads to better plasma illumination (PI) properties, i.e., they show the smallest threshold field of 3300 V/cm with largest PI current density of 2.10 mA/cm(2) at an applied field of 5750 V/cm.

16.
ACS Appl Mater Interfaces ; 5(15): 7439-49, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23849039

ABSTRACT

We report the systematic studies on the fabrication of aligned, uniform, and highly dense diamond nanostructures from diamond films of various granular structures. Self-assembled Au nanodots are used as a mask in the self-biased reactive-ion etching (RIE) process, using an O2/CF4 process plasma. The morphology of diamond nanostructures is a close function of the initial phase composition of diamond. Cone-shaped and tip-shaped diamond nanostructures result for microcrystalline diamond (MCD) and nanocrystalline diamond (NCD) films, whereas pillarlike and grasslike diamond nanostructures are obtained for Ar-plasma-based and N2-plasma-based ultrananocrystalline diamond (UNCD) films, respectively. While the nitrogen-incorporated UNCD (N-UNCD) nanograss shows the most-superior electron-field-emission properties, the NCD nanotips exhibit the best photoluminescence properties, viz, different applications need different morphology of diamond nanostructures to optimize the respective characteristics. The optimum diamond nanostructure can be achieved by proper choice of granular structure of the initial diamond film. The etching mechanism is explained by in situ observation of optical emission spectrum of RIE plasma. The preferential etching of sp(2)-bonded carbon contained in the diamond films is the prime factor, which forms the unique diamond nanostructures from each type of diamond films. However, the excited oxygen atoms (O*) are the main etching species of diamond film.


Subject(s)
Biosensing Techniques , Diamond/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Anisotropy , Carbon/chemistry , Crystallization , Ions , Luminescence , Materials Testing , Nitrogen/chemistry , Optics and Photonics , Oxygen/chemistry , Photochemistry/methods , Spectrophotometry/methods , Surface Properties , Temperature
17.
Nanoscale Res Lett ; 7(1): 522, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23009733

ABSTRACT

Vertically aligned conducting ultrananocrystalline diamond (UNCD) nanorods are fabricated using the reactive ion etching method incorporated with nanodiamond particles as mask. High electrical conductivity of 275 Ω·cm-1 is obtained for UNCD nanorods. The microplasma cavities using UNCD nanorods as cathode show enhanced plasma illumination characteristics of low threshold field of 0.21 V/µm with plasma current density of 7.06 mA/cm2 at an applied field of 0.35 V/µm. Such superior electrical properties of UNCD nanorods with high aspect ratio potentially make a significant impact on the diamond-based microplasma display technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...