Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 200: 107758, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37267754

ABSTRACT

Ethylene is a plant hormone that causes flower senescence. Dendrobium flowers are sensitive to ethylene and ethylene can induce premature senescence depending on the cultivar and the ethylene concentration. Dendrobium 'Lucky Duan' is one of the most sensitive cultivars to ethylene exposure. Open florets of 'Lucky Duan' were subjected to ethylene, 1-MCP, or 1-MCP plus ethylene treatments and compared with an untreated control. Ethylene induced earlier development of color fading, drooping and venation in petals, whereas 1-MCP pre-treatment counteracted these changes. Under light microscopy, epidermal cells and mesophyll parenchyma tissue around the vascular bundles of petals treated with ethylene showed collapsed cells whereas 1-MCP pre-treatment counteracted this collapse. An scanning electron microscopy (SEM) study confirmed clearly that ethylene treatment caused the collapse of mesophyll parenchyma tissue around vascular bundles. Ultrastructural changes were also studied using transmission electron microscopy (TEM) and showed that ethylene treatment induced morphological changes in conjunction with disorganization of the plasma membrane, the nuclei, chromatin, the nucleoli, myelin bodies, multivesicular bodies, and mitochondria including changes in size and number, breakages of membranes, enlargement of intercellular spaces and disintegration. 1-MCP pre-treatment was observed to counter these changes that were induced by ethylene. The role of ethylene-induced ultrastructural changes in the different organelles was apparently associated with membrane damage.


Subject(s)
Dendrobium , Ethylenes/pharmacology , Ethylenes/metabolism , Mitochondria/metabolism , Microscopy, Electron, Transmission , Flowers/metabolism
2.
J Plant Physiol ; 182: 33-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26047070

ABSTRACT

Durian (Durio zibethinus) fruit was harvested at the commercially mature stage and stored at 25°C. Durian fruit have 3-5 longitudinal dehiscence zones (DZs) in the peel, which are up to 40cm long and 2cm thick in large fruit. Dehiscence started a week after harvest, was hastened by exogenous ethylene, and delayed by 1-methylcyclopropene (1-MCP), showing that it is regulated by endogenous ethylene. Three genes encoding α-expansins (DzEXP1-3) were isolated. In the expression of these genes increased, prior to dehiscence. Pulp firmness decreased during storage. The decrease was hastened by ethylene and delayed by 1-methylcyclopropene (1-MCP). Exogenous ethylene promoted gene expression of DzEXP1 both in the DZs and in the pulp. It had a smaller effect on DzEXP2 in the zones and pulp, but did not affect DzEXP3 expression. 1-MCP inhibited the expression of DzEXP1 and, somewhat less, of DzEXP2, but did not affect DzEXP3 expression, both in DZs and pulp. It is concluded that the close relationship between expression of DzEXP1 and DzEXP2 and both dehiscence and fruit softening suggests that these genes are involved in both processes.


Subject(s)
Bombacaceae/metabolism , Plant Proteins/metabolism , Bombacaceae/genetics , Bombacaceae/growth & development , Cyclopropanes/pharmacology , Ethylenes/pharmacology , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Proteins/physiology
3.
Funct Plant Biol ; 35(12): 1205-1211, 2008 Dec.
Article in English | MEDLINE | ID: mdl-32688867

ABSTRACT

After harvest, mature fruit of sapodilla (Manilkara zapota van Royen) exhibit rapid softening. The decrease in fruit firmness was hastened by ethylene and delayed by 1-methylcyclopropene (1-MCP). Two genes encoding expansins (called MzEXP1 and MzEXP2) were isolated. In both cultivars studied (Makok-Yai and Kra-Suay), MzEXP1 was transiently expressed early during fruit development on the plant. This suggests that it is involved in cell wall loosening during early fruit growth. In cv. Makok-Yai, MzEXP2 was expressed between 1 day before harvest and day 4 after harvest. In cv. Kra-Suay, the expression of MzEXP2 started 8 weeks before the normal harvest stage, and ended on day 3 after harvest. When the fruit of both cultivars was treated with ethylene (50 µL L-1 for 20 h at 25°C) just after harvest, the expression of MzEXP2 became undetectable. After treatment with 1-MCP MzEXP2 mRNA was highly abundant until day 5 after harvest, when in controls the transcript abundance had become undetectable. The onset of MzEXP2 expression seems not regulated by ethylene, as the concomitant ethylene levels are very low. The data strongly indicate that the decrease of MzEXP2 transcript abundance is due to ethylene production by the fruit, which is by then high. The expression of MzEXP2 ceased, both in controls and in ethylene-treated material, when the fruit had reached a rather low threshold firmness. The data suggest that the protein has a supporting and cooperative role in fruit softening.

SELECTION OF CITATIONS
SEARCH DETAIL
...