Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Front Nutr ; 11: 1351433, 2024.
Article in English | MEDLINE | ID: mdl-38389793

ABSTRACT

Scope: 2´-Fucosyllactose (2´-FL), the most abundant oligosaccharide in human milk, plays an important role in numerous biological functions, including improved learning. It is not clear, however, whether 2´-FL or a cleavage product could influence neuronal cell activity. Thus, we investigated the effects of 2´-FL, its monosaccharide fucose (Fuc), and microbial fermented 2´-FL and Fuc on the parameters of neuronal cell activity in an intestinal-neuronal transwell co-culture system in vitro. Methods: Native 13C-labeled 2´-FL and 13C-Fuc or their metabolites, fermented with Bifidobacterium (B.) longum ssp. infantis and B. breve, which were taken from the lag-, log- and stationary (stat-) growth phases of batch cultures, were applied to the apical compartment of the co-culture system with Caco-2 cells representing the intestinal layer and all-trans-retinoic acid-differentiated SH-SY5Y (SH-SY5YATRA) cells mimicking neuronal-like cells. After 3 h of incubation, the culture medium in the basal compartment was monitored for 13C enrichment by using elemental analysis isotope-ratio mass spectrometry (EA-IRMS) and effects on cell viability, plasma, and mitochondrial membrane potential. The neurotransmitter activation (BDNF, GABA, choline, and glutamate) of SH-SY5YATRA cells was also determined. Furthermore, these effects were also measured by the direct application of 13C-2´-FL and 13C-Fuc to SH-SY5YATRA cells. Results: While no effects on neuronal-like cell activities were observed after intact 2´-FL or Fuc was incubated with SH-SY5YATRA cells, supernatants from the stat-growth phase of 2´-FL, fermented by B. longum ssp. infantis alone and together with B. breve, significantly induced BDNF release from SH-SY5YATRA cells. No such effects were found for 2´-FL, Fuc, or their fermentation products from B. breve. The BDNF release occurred from an enhanced vesicular release, which was confirmed by the use of the Ca2+-channel blocker verapamil. Concomitant with this event, 13C enrichment was also observed in the basal compartment when supernatants from the stat-growth phase of fermentation by B. longum ssp. infantis alone or together with B. breve were used. Conclusion: The results obtained in this study suggest that microbial products of 2´-FL rather than the oligosaccharide itself may influence neuronal cell activities.

2.
J Proteome Res ; 20(8): 3865-3874, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34170688

ABSTRACT

Human milk oligosaccharides (HMOs) have attracted much attention in recent years not only as a prebiotic factor but also in particular as an essential component of infant nutrition in relation to their impact on innate immunity. The backbone structures of complex HMOs generally contain single or repetitive lacto-N-biose (type 1) or lactosamine (type 2) units in either linear or branched chains extending from a lactose core. While all known branched structures originate from the 3,6-substitution of the lactosyl core galactose, we here describe a new class of HMOs that tentatively branch at the terminal galactose of 6'-galactosyllactose. Another novel feature of this class of HMOs was found in linear oligo-galactosyl chains linked to one of the N-acetylglucosamine (GlcNAc) branches. The novel structures exhibit general formulas with hexose versus hexosamine contents of 5/2 to 8/2 and can be designated as high-galactose (HG)-HMOs. In addition, up to three fucosyl residues are linked to the octa- to dodecasaccharides, which were detected in two human milk samples from the Lewis blood-group-defined donors. Structural analyses of methylated glycans and their alditols comprised matrix-assisted laser desorption ionization mass spectrometry, electrospray-(collision-induced dissociation) mass spectrometry and linkage analyses by gas chromatography-mass spectrometry of the derived partially methylated alditol acetates. Enzymatic degradation by the application of ß1-3,4-specific galactosidase supported the presence of terminal galactose-linked ß1-6 to one of the two GlcNAc branches. The mass spectrometry glycomic data have been deposited at the GlycoPOST archive with the data set identifier GPST000191 (Username: franz.hanisch@uni-koeln.de; Password: Soma1Dita2Carb. Watanabe, Y. GlycoPOST realizes FAIR principles for glycomics mass spectrometry data. Nucleic Acids Res.2021,49, D1523-D1528).


Subject(s)
Acetylglucosamine , Milk, Human , Humans , Infant , Lactose , Oligosaccharides , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
Mol Nutr Food Res ; 65(16): e2100045, 2021 08.
Article in English | MEDLINE | ID: mdl-34139057

ABSTRACT

SCOPE: To further examine the role of the human milk oligosaccharide 2'fucosyllactose (2´FL) and fucose (Fuc) in cognition. Using 13 C-labeled 2'FL,thestudy previously showed in mice that 13 C-enrichment of the brain is not caused by 13 C1 -2´FL itself, but rather by microbial metabolites. Here, the study applies 13 C1 -Fuc in the same mouse model to investigate its uptake into the brain. METHODS AND RESULTS: Mice received 13 C1 -Fuc via oral gavage (2 mmol 13 C1 -Fuc/kg-1 body weight) or intravenously (0.4 mmol/kg-1 body weight). 13 C-enrichment is measured in organs, including various brain regions, biological fluids and excrements. By EA-IRMS, the study observes an early rise of 13 C-enrichment in plasma, 30 min after oral dosing. However, 13 C-enrichment in the brain does not occur until 3-5 h post-dosing, when the 13 C-Fuc bolus has already reached the lower gut. Therefore, the researcher assume that 13 C-Fuc is absorbed in the upper small intestine but cannot cross the blood-brain barrier which is also observed after intravenous application of 13 C1 -Fuc. CONCLUSIONS: Late 13 C-enrichment in the rodent brain may be derived from 13 C1 -Fuc metabolites derived from bacterial fermentation. The precise role that Fuc or 2´FL metabolites might play in gut-brain communication needs to be investigated in further studies.


Subject(s)
Blood-Brain Barrier , Brain/metabolism , Fucose/pharmacokinetics , Administration, Intravenous , Administration, Oral , Animals , Brain-Gut Axis , Intestine, Small/metabolism , Male , Mice
4.
Nanomaterials (Basel) ; 10(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570904

ABSTRACT

Despite intensive research activities in the field of laser-induced periodic surface structures (LIPSS), the large-area nanostructuring of glasses is still a challenging problem, which is mainly caused by the strongly non-linear absorption of the laser radiation by the dielectric material. Therefore, most investigations are limited to single-spot experiments on different types of glasses. Here, we report the homogeneous generation of LIPSS on large-area surfaces of fused silica using thin gold layers and a fs-laser with a wavelength λ = 1025 nm, a pulse duration τ = 300 fs, and a repetition frequency frep = 100 kHz as radiation source. For this purpose, single-spot experiments are performed to study the LIPSS formation process as a function of laser parameters and gold layer thickness. Based on these results, the generation of large-area homogenous LIPSS pattern was investigated by unidirectional scanning of the fs-laser beam across the sample surface using different line spacing. The nanostructures are characterized by a spatial period of about 360 nm and a modulation depth of around 160 nm. Chemical surface analysis by Raman spectroscopy confirms a complete ablation of the gold film by the fs-laser irradiation. The characterization of the functional properties shows an increased transmission of the nanostructured samples accompanied by a noticeable change in the wetting properties, which can be additionally modified within a wide range by silanization. The presented approach enables the reproducible LIPSS-based laser direct-writing of sub-wavelength nanostructures on glasses and thus provides a versatile and flexible tool for novel applications in the fields of optics, microfluidics, and biomaterials.

5.
Langmuir ; 35(47): 14990-14998, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31687824

ABSTRACT

Femtosecond (fs) laser-induced periodic surface structures (LIPSS) were selectively generated on the surface of an Ag-Si alloy consisting of a metallic and a semiconducting phase. For this purpose, the alloy was irradiated with linearly polarized fs-laser pulses (τ = 300 fs, λ = 1025 nm, frep = 100 kHz) using a laser peak fluence F = 0.30 J/cm2. Due to the different light absorption behaviors of the semiconductor (Si) and the metal (Ag) phases that result in different ablation thresholds of the respective phases, pronounced LIPSS with a period of Λ ≈ 950 nm and a modulation depth of h ≈ 220 nm were generated solely on the Si phase. The alloy surface was characterized by scanning electron microscopy, optical microscopy, white-light interference microscopy, and atomic force microscopy before and after laser irradiation. The chemical analysis was carried out by energy-dispersive X-ray spectroscopy, revealing surface oxidation of the Si phase and no laser-induced chemical modification of the Ag phase. The surface wettability of the alloy was evaluated with distilled water and compared to those of the single constituents of the composites. After fs-laser irradiation, the surface is characterized by a reduced hydrophilic water contact angle. Furthermore, the alloy selectively structured with LIPSS revealed a droplet shape change due to the distinctly different contact angles on the Si (θ = 5°) and Ag (θ = 74°) phases. This phenomenon was evaluated and discussed by local contact angle analyses using a confocal laser scanning microscope and Rhodamine B dye. In addition, it was shown that the shape change due to different contact angles of the components allowed a targeted droplet movement on a macroscopic material boundary (Ag/Si) of the alloy. Selectively structured metal/semiconductor surfaces might be of particular interest for microfluidic devices with a directional droplet movement and for the fundamental research of wettability.

6.
Mol Nutr Food Res ; 63(13): e1900035, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31125176

ABSTRACT

SCOPE: 2´-Fucosyllactose (2´FL) is an abundant oligosaccharide in human milk. It is hypothesized that its brain enrichment is associated with improved learning. Accumulation of 2´FL in organs, biological fluids, and feces is assessed in wild-type and germ-free mice. METHODS AND RESULTS: 13 C-labelled 2´FL is applied to NMRI wild-type mice intravenously (0.2 g kg-1 ) or orally (1 g kg-1 ), while controls receive saline. Biological samples are collected (0.5-15 h) and 13 C-enrichment is measured by elemental analysis isotope ratio mass spectrometry (EA-IRMS). After oral application, 2´FL is primarily eliminated in the feces. 13 C-enrichment in organs including the brain follows the same pattern as in plasma with a maximum peak after 5 h. However, 13 C-enrichment is only detected when the 13 C-2´FL bolus reaches the colon. In contrast, in germ-free mice, the 13 C-bolus remains in the intestinal content and is expelled via the feces. Furthermore, intravenously applied 13 C-2´FL is eliminated via urine; no 13 C-enrichment of organs is observed, suggesting that intact 2´FL is not retained. CONCLUSIONS: 13 C-enrichment in brain and other organs after oral application of 13 C-2´FL in wild-type mice indicates cleaved fucose or other gut microbial 2´FL metabolites may be incorporated, as opposed to intact 2´FL.

7.
Front Nutr ; 6: 23, 2019.
Article in English | MEDLINE | ID: mdl-30931310

ABSTRACT

Human milk oligosaccharides (HMO) are major components of breast milk that may have local effects in the gastrointestinal tract and systemic functions after being absorbed, both depending on their metabolism. Using preterm pigs, we investigated the metabolic fate of HMO in three experiments with two different HMO blends. In addition, we examined effects on the colonic microbiota in the presence or absence of necrotizing enterocolitis (NEC). Thus, preterm pigs (n = 112) were fed formula without or with HMO supplementation (5-10) g/L of a mixture of 4 (4-HMO) or >25 HMO (25-HMO) for 5 (Experiment 1 and 2) or 11 days (Experiment 3). Individual HMO were quantified in colon contents and urine using MALDI-TOF-MS (matrix-assisted laser desorption ionization mass spectrometry) and HPAEC-PAD (high-performance anion-exchange chromatography with pulsed amperometric detection). Microbial colonization was analyzed by sequencing of 16S rRNA gene tags. Intestinal permeability was measured by lactulose to mannitol ratio in urine. HMO supplemented to formula were detected in urine and colon contents in preterm piglets after 5 and 11 days in all three experiments. The amount of HMO excreted via the gut or the kidneys showed large individual variations. Microbial diversity in the colon changed from high levels of Firmicutes (dominated by Clostridium) at day 5 (Exp 2) to high levels of Proteobacteria dominated by Helicobacter and Campylobacter at day 11 (Exp 3). Colonic microbiota composition as well as HMO excretion pattern varied greatly among piglets. Interestingly, the 5-day supplementation of the complex 25-HMO blend led to low concentrations of 3-fucosyllactose (FL) and lacto-N-fucopentaose (LNFP) I in colonic contents, indicating a preferred utilization of these two HMO. Although the interpretation of the data from our piglet study is difficult due to the large individual variation, the presence of Bifidobacteria, although low in total numbers, was correlated with total HMO contents, and specifically with 2'FL levels in colonic content. However, early supplementation of formula with HMO did not affect NEC incidence.

8.
Front Nutr ; 6: 31, 2019.
Article in English | MEDLINE | ID: mdl-30984764

ABSTRACT

Oligosaccharides are present in human milk (HMO) in large amounts and in a high variety: Among other functions they are considered to influence the gut microbiota and gut maturation in infants. Due to the large volume of milk available bovine milk oligosaccharides (BMO) may be an alternative source of functional ingredients to potentially mimic HMO functions. Thus, we investigated direct effects of bovine milk oligosaccharides (BMO) from different cattle breeds on proliferation, differentiation and apoptosis in transformed (HT-29 and Caco-2) and non-transformed human intestinal cells (HIE cells). We observed a profound growth-inhibition effect induced by all BMO isolates in HT-29, Caco-2, and HIE cells in a dose-dependent manner. The effects varied not only between cell lines, i.e., HT-29 and Caco-2 cells were more sensitive than HIE cells, but also between the cattle breeds. Regarding the induction of differentiation, BMO induced differentiation only in HIE cells without affecting apoptosis. Cell cycle analysis via flow cytometry showed that growth inhibition was associated with a G2/M arrest in all cell lines. Expression levels detected by quantitative real-time RT-PCR revealed that this G2/M arrest was associated with changes in mRNA expression levels of cyclin A and B. Cyclin-dependent kinase inhibitors p21 cip1 and p27 kip1 and the tumor suppressor p53 were only enhanced in HIE cells necessary for arresting cells in the G2/M phase and induction of differentiation. In HT-29 and Caco-2 cells, a loss of p53 expression failed to induce G2/M associated induction of differentiation. The HIE cell specific differentiation induced by BMO was a result of influencing the phosphorylation states of EGFR (epidermal growth factor receptor) and MAP kinase, i.e., ERK1/2 (extracellular signal-regulated kinase 1/2), p38-α, and Akt2 phosphorylation. These results suggest that BMO inhibited intestinal cell proliferation and altered cell cycle dynamics by affecting corresponding regulator genes and mitogen-activated protein kinase signaling. As the development and maturation of digestive and absorptive processes depends on gut differentiation processes, our in vitro experiments show that breed-specific BMO are natural substances influencing various parameter which may be important in vivo in gastrointestinal development. This, however, needs to be proven in future studies.

9.
Carbohydr Polym ; 208: 32-41, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30658806

ABSTRACT

Polysialic acid (polySia) is a linear carbohydrate polymer consisting of N-acetylneuraminic acid residues and is involved in several physiological processes. In the present study, we identified the multifunctional protein lactoferrin as a novel interaction partner for polySia. Lactoferrin co-precipitated when polySia was isolated from human blood, milk, and semen samples. The interaction between polySia and lactoferrin was verified using a native gel electrophoresis application, demonstrating that such interaction depends on the degree of polymerization. The interaction between the molecules could be inhibited by an antibody against lactoferricin (LFcin), which suggests that the LFcin domain of lactoferrin represents the potential binding area for sialic acid polymers. Because lactoferrin inhibits the formation of neutrophil extracellular traps (NETs), the potential impact of polySia on this function of lactoferrin was tested. Intriguingly, we observed that polySia increases the efficiency of lactoferrin to prevent the release of NET fibers. PolySia alone shows no activity. Therefore, together with lactoferrin, polySia may represent a natural regulatory system of NET release.

10.
Eur J Nutr ; 58(4): 1711-1722, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29777304

ABSTRACT

PURPOSE: Vitamin D is a key component for the growth and development of children and adolescents, influencing a multitude of functions. Worldwide epidemiological studies have shown that minimum vitamin D blood levels of ≥ 20.0 ng/ml, often defined as vitamin D sufficiency by international and national nutrition and pediatric organizations, are often not met in practice. In 2012 the D-A-CH (Germany, Austria, Switzerland) nutrition societies increased their vitamin D intake recommendations fourfold from 200 IU (5 µg) to 800 IU (20 µg) per day. The outcome of this study will contribute to answering the question as to whether the new recommendations for increased vitamin D intake improve the highly prevalent vitamin D deficiency status in German children and adolescents. METHODS: For this 6-year study (January 2009-December 2014) carried out in Mülheim an der Ruhr, Germany, healthy children and adolescents (n = 1929, age range 1-17 years, median age 11.0 years, 46.9% female) consulting a pediatric group practice (KIDS4.0) were recruited. Serum 25(OH)D determinations were performed using a competitive chemoluminescence immunoassay (CLIA, DiaSorin). RESULTS: The median serum vitamin D values for each year from 2009 to 2014 were 18.4, 13.0, 20.8, 16.4, 19.4 and 14.9 ng/ml. The summarized median 25(OH)D serum concentrations between the two time periods 2009-2012 and 2013-2014 after increasing recommendations for vitamin D intake did not show a significant difference (17.0 versus 16.8 ng/ml). CONCLUSIONS: The increased D-A-CH recommendations for vitamin D intake had no influence on vitamin D levels in children and adolescents. The prevalence of vitamin D deficiency has not changed compared to previous studies.


Subject(s)
Nutrition Surveys/statistics & numerical data , Recommended Dietary Allowances , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology , Vitamin D/blood , Adolescent , Child , Child, Preschool , Female , Germany/epidemiology , Humans , Infant , Male
11.
J Pediatr Gastroenterol Nutr ; 68(2): 256-263, 2019 02.
Article in English | MEDLINE | ID: mdl-30540710

ABSTRACT

BACKGROUND AND OBJECTIVES: Breast milk contains several bioactive factors including human milk oligosaccharides (HMOs) and microbes that shape the infant gut microbiota. HMO profile is determined by secretor status; however, their influence on milk microbiota is still uncovered. This study is aimed to determine the impact of the FUT2 genotype on the milk microbiota during the first month of lactation and the association with HMO. METHODS: Milk microbiota from 25 healthy lactating women was determined by quantitative polymerase chain reaction and 16S gene pyrosequencing. Secretor genotype was obtained by polymerase chain reaction-random fragment length polymorphisms and by HMO identification and quantification. RESULTS: The most abundant bacteria were Staphylococcus and Streptococcus, followed by Enterobacteriaceae-related bacteria. The predominant HMO in secretor milk samples were 2'FL and lacto-N-fucopentaose I, whereas non-secretor milk was characterized by lacto-N-fucopentaose II and lacto-N-difucohexaose II. Differences in microbiota composition and quantity were found depending on secretor/non-secretor status. Lactobacillus spp, Enterococcus spp, and Streptococcus spp were lower in non-secretor than in secretor samples. Bifidobacterium genus and species were less prevalent in non-secretor samples. Despite no differences on diversity and richness, non-secretor samples had lower Actinobacteria and higher relative abundance of Enterobacteriaceae, Lactobacillaceae, and Staphylococcaceae. CONCLUSIONS: Maternal secretor status is associated with the human milk microbiota composition and is maintained during the first 4 weeks. Specific associations between milk microbiota, HMO, and secretor status were observed, although the potential biological impact on the neonate remains elusive. Future studies are needed to reveal the early nutrition influence on the reduction of risk of disease.


Subject(s)
Fucosyltransferases/metabolism , Lactation/metabolism , Milk, Human/chemistry , Milk, Human/microbiology , Oligosaccharides/metabolism , Bifidobacterium/isolation & purification , Female , Genotype , Humans , Infant , Infant, Newborn , Microbiota , Pilot Projects , Polymerase Chain Reaction , RNA, Ribosomal, 16S , Galactoside 2-alpha-L-fucosyltransferase
12.
Sci Rep ; 8(1): 13757, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214024

ABSTRACT

One of the most abundant components in human milk is formed by oligosaccharides, which are poorly digested by the infant. The oligosaccharide composition of breast milk varies between mothers, and is dependent on maternal secretor (FUT2) genotype. Secretor mothers produce milk containing α1-2 fucosylated human milk oligosaccharides, which are absent in the milk of non-secretor mothers. Several strains of bacteria in the infant gut have the capacity to utilise human milk oligosaccharides (HMOs). Here we investigate the differences in infant gut microbiota composition between secretor (N = 76) and non-secretor (N = 15) mothers, taking into account birth mode. In the vaginally born infants, maternal secretor status was not associated with microbiota composition. In the caesarean-born, however, many of the caesarean-associated microbiota patterns were more pronounced among the infants of non-secretor mothers compared to those of secretor mothers. Particularly bifidobacteria were strongly depleted and enterococci increased among the caesarean-born infants of non-secretor mothers. Furthermore, Akkermansia was increased in the section-born infants of secretor mothers, supporting the suggestion that this organism may degrade HMOs. The results indicate that maternal secretor status may be particularly influential in infants with compromised microbiota development, and that these infants could benefit from corrective supplementation.


Subject(s)
Fucosyltransferases/genetics , Gastrointestinal Microbiome/drug effects , Milk, Human/metabolism , Oligosaccharides/administration & dosage , Bifidobacterium/chemistry , Bifidobacterium/metabolism , Breast Feeding , Cesarean Section/adverse effects , Cesarean Section/rehabilitation , Female , Gastrointestinal Microbiome/genetics , Humans , Infant , Lactation/genetics , Lactose/chemistry , Lactose/metabolism , Milk, Human/chemistry , Mothers , Oligosaccharides/chemistry , Oligosaccharides/genetics , Pregnancy , RNA, Ribosomal, 16S/genetics , Galactoside 2-alpha-L-fucosyltransferase
13.
Materials (Basel) ; 11(8)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072643

ABSTRACT

The formation and properties of laser-induced periodic surface structures (LIPSS) were investigated upon fs-laser irradiation of fused silica at different initial substrate temperatures, TS. For substrate heating between room temperature, TRT, and TS = 1200 °C, a continuous wave CO2 laser was used as the radiation source. The surface structures generated in the air environment at normal incidence with five successive fs-laser pulses (pulse duration, τ = 300 fs, laser wavelength, λ = 1025 nm, repetition frequency, frep = 1 kHz) were characterized by using optical microscopy, scanning electron microscopy, and 2D-Fourier transform analysis. The threshold fluence of fused silica was systematically investigated as a function of TS. It was shown that the threshold fluence for the formation of low-spatial frequency LIPSS (LSFL) decreases with increasing TS. The results reveal that the initial spatial period observed at TRT is notably increased by increasing TS, finally leading to the formation of supra-wavelength LIPSS. The findings are discussed in the framework of the electromagnetic interference theory, supplemented with an analysis based on thermo-convective instability occurring in the laser-induced molten layer. Our findings provide qualitative insights into the formation mechanisms of LIPSS, which allow improvements of the control of nanostructure formation to be made for corresponding applications of dielectric materials in the future.

14.
Eur J Microbiol Immunol (Bp) ; 8(2): 41-46, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-29997910

ABSTRACT

Probiotics are considered to have a beneficial impact on humans, but in some cases, administration of live microorganisms might be risky. In the present study, immunomodulatory effects of different Escherichia coli strains and their super-natants were examined under different inflammatory conditions with living and heat-inactivated strains. HT-29 cells were incubated with E. coli strains (S2-G1, S2-G3, S2-G4 and S2-G8) and their supernatants with or without stimulation with tumor necrosis factor alpha (TNF-α) or interleukin (IL)-1ß. Quantification of IL-8 secretion and gene expression was performed by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR). IL-8 secretion by TNF-α- and IL-1ß-stimulated cells was attenuated by all four live strains. In contrast, heat inactivation resulted in an elevated IL-8 expression and secretion in unstimulated cells and did not maintain the anti-inflammatory effect of live bacteria in cytokine-stimulated cells. The supernatant of the live S2-G3 led to an elevated IL-8 secretion in unstimulated and IL-1ß-stimulated cells but not in TNF-α-stimulated cells. Live bacteria of all strains might induce an immunosuppressive effect after stimulation of HT-29 cells, whereas heat inactivation and the supernatant seem to induce an elevated immune response. These findings might have an impact depending on the indication and purpose of administration.

15.
J Biol Chem ; 293(30): 11955-11965, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29858242

ABSTRACT

There is agreement with respect to norovirus infection routes in humans regarding binding of the pathogen to gastrointestinal epithelia via recognition of blood group-active mucin-typeO-glycans as the initiating and essential event. Among food additives playing a potential role in applications to protect newborns, human milk oligosaccharides (HMOs) as competitors are of major importance. By focusing on fractions of high-molecular mass HMOs with high fucose contents, we attempted to identify the structural elements required for norovirus GII.4 (Sydney 2012, JX459908) capsid binding in neoglycolipid-based arrays. We provide evidence that HMO fractions with the strongest binding capacities contained hepta- to decasaccharides expressing branches with terminal blood group H1 or Lewis-b antigen. H2 antigen, as recognized by UEA-I lectin, is apparently not expressed in high-mass HMOs. Beyond affinity, sterical and valency effects contribute more to virus-like particle binding, as revealed for oligovalent fucose conjugates of α-cyclodextrin and oligofucoses from fucoidan. Accordingly, high-mass HMOs with oligovalent fucose can exhibit stronger binding capacities compared with monovalent fucose HMOs. The above features were revealed for the most clinically relevant and prevalent GII.4 strain and are distinct from other strains, like GII.10 (Vietnam 026, AF504671), which showed a preference for blood group Lewis-a positive glycans.


Subject(s)
Caliciviridae Infections/immunology , Fucose/immunology , Milk, Human/immunology , Norovirus/immunology , Oligosaccharides/immunology , Blood Group Antigens/chemistry , Blood Group Antigens/immunology , Fucose/chemistry , Humans , Immunity, Innate , Milk, Human/chemistry , Mucins/chemistry , Mucins/immunology , Norovirus/physiology , Oligosaccharides/chemistry , Polysaccharides/chemistry , Polysaccharides/immunology , Virus Attachment
16.
Materials (Basel) ; 11(5)2018 May 12.
Article in English | MEDLINE | ID: mdl-29757240

ABSTRACT

Hierarchical surface structures were fabricated on fused silica by using a fs-laser with a pulse duration τ = 300 fs and a wavelength λ = 512 nm. The resulting surface structures were characterized by scanning electron microscopy, atomic force microscopy and white light interference microscopy. The optical properties were analyzed by transmittance measurements using an integrating sphere and the wettability was evaluated by measuring the water contact angle θ. The silanization of structured fused silica surfaces with trichloro(1H,1H,2H,2H-perfluorooctyl)silane allows to switch the wettability from superhydrophilic (θ = 0°) to superhydrophobic behavior with θ exceeding 150°. It was shown that the structured silica surfaces are a suitable master for negative replica casting and that the hierarchical structures can be transferred to polystyrene. The transmittance of structured fused silica surfaces decreases only slightly when compared to unstructured surfaces, which results in high transparency of the structured samples. Our findings facilitate the fabrication of transparent glass samples with tailored wettability. This might be of particular interest for applications in the fields of optics, microfluidics, and biomaterials.

17.
Mol Nutr Food Res ; 62(6): e1700679, 2018 03.
Article in English | MEDLINE | ID: mdl-29336526

ABSTRACT

Human milk oligosaccharides (HMOs) are diverse unconjugated carbohydrates that are highly abundant in human breast milk. These glycans are investigated in the context of exhibiting multiple functions in infant growth and development. They seem to provide protection against infectious diseases, including a number of poorly manageable viral infections. Although the potential mechanism of the HMO antiviral protection is rather broad, much of the current experimental work has focused on studying of HMO antiadhesive properties. HMOs may mimic structures of viral receptors and block adherence to target cells, thus preventing infection. Still, the potential of HMOs as a source for new antiviral drugs is relatively unexploited. This can be partly attributed to the extreme complexity of the virus-carbohydrate interactions and technical difficulties in HMO isolation, characterization, and manufacturing procedures. Fortunately, we are currently entering a period of major technological advances that have enabled deeper insights into carbohydrate mediated viral entry, rational selection of HMOs as anti-entry inhibitors, and even evaluation of individual synthetic HMO structures. Here, we provide an up-to-date review on glycan binding studies for rotaviruses, noroviruses, influenza viruses, and human immunodeficiency viruses. We also discuss the preventive and therapeutic potential of HMOs as anti-entry inhibitors and address challenges on the route from fundamental studies to clinical trials.


Subject(s)
Antiviral Agents/pharmacology , Milk, Human/chemistry , Oligosaccharides/pharmacology , HIV Infections/prevention & control , Humans , Influenza, Human/prevention & control , Norovirus/drug effects , Rotavirus/drug effects , Virus Assembly
18.
Materials (Basel) ; 10(8)2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28796180

ABSTRACT

The formation and properties of laser-induced periodic surface structures (LIPSS) was investigated on different technically relevant glasses including fused silica, borosilicate glass, and soda-lime-silicate glass under irradiation of fs-laser pulses characterized by a pulse duration τ = 300 fs and a laser wavelength λ = 1025 nm. For this purpose, LIPSS were fabricated in an air environment at normal incidence with different laser peak fluence, pulse number, and repetition frequency. The generated structures were characterized by using optical microscopy, scanning electron microscopy, focused ion beam preparation and Fast-Fourier transformation. The results reveal the formation of LIPSS on all investigated glasses. LIPSS formation on soda-lime-silicate glass is determined by remarkable melt-formation as an intra-pulse effect. Differences between the different glasses concerning the appearing structures, their spatial period and their morphology were discussed based on the non-linear absorption behavior and the temperature-dependent viscosity. The findings facilitate the fabrication of tailored LIPSS-based surface structures on different technically relevant glasses that could be of particular interest for various applications.

19.
Nestle Nutr Inst Workshop Ser ; 88: 137-147, 2017.
Article in English | MEDLINE | ID: mdl-28346931

ABSTRACT

It is a great success that biotechnological means are available today to produce amounts of single human milk oligosaccharides (HMOs) in a purity which allows performing metabolic and functional studies even in humans. As recent data indicate that there is a link between the Lewis blood group and the secretor status of an individual and certain inflammatory diseases, this review will also focus on the metabolic fate of secretor- and Lewis blood group-specific components. We conclude that there is no simple urinary or fecal excretion pattern of HMOs, although the pattern in urine often reflects the mother's secretor/nonsecretor status. However, there are deviations for single HMOs which deserve special attention. In feces, the variation in excretion is much higher than in urine, which may be caused by variations in the infant's intestinal microbiota. A gradual decrease in HMO excretion with time as proposed earlier does not take place as even after 7 months of exclusive breastfeeding often intact HMOs can be detected in feces and urine. In addition, we found that whenever oligosaccharides were detected in feces, LNT, the major core structure of HMOs, was present. Hence, our data do not support speculations that LNT is a preferable source for the microbiota.


Subject(s)
Milk, Human/chemistry , Oligosaccharides/analysis , Oligosaccharides/metabolism , Feces/chemistry , Female , Gastrointestinal Microbiome/physiology , Humans , Inflammation/blood , Lewis Blood Group Antigens , Oligosaccharides/urine
20.
Eur J Nutr ; 56(3): 1293-1301, 2017 Apr.
Article in English | MEDLINE | ID: mdl-26907090

ABSTRACT

PURPOSE: Manifestation of allergic disease depends on genetic predisposition, diet and commensal microbiota. Genetic polymorphism of mothers determines their breast milk glycan composition. One major determinant is the fucosyltransferase 2 (FUT2, secretor gene) that was shown to be linked to commensal microbiota establishment. We studied whether FUT2-dependent breast milk oligosaccharides are associated with allergic disease in breast-fed infants later in life. METHODS: We analyzed FUT2-dependent oligosaccharides in breast milk samples of mothers (n = 266) from the placebo group of a randomized placebo-controlled trial of prebiotics and probiotics as preventive against allergic disease in infants with high allergy risk (trial registry number: NCT00298337). Using logistic regression models, we studied associations between FUT2-dependent breast milk oligosaccharides and incidence of allergic disease at 2 and 5 years of age. RESULTS: At 2 years, but not at 5 years of age, we observed a presumed lower incidence (p < 0.1) for IgE-associated eczema manifestation in C-section-born infants who were fed breast milk containing FUT2-dependent oligosaccharides. By logistic regression, we observed a similar relation (p < 0.1) between presence of FUT2-dependent breast milk oligosaccharides and IgE-associated disease and IgE-associated eczema in C-section-born infants only. When testing with the levels of breast milk oligosaccharide 2'-fucosyllactose as proxy for FUT2 activity, we observed significant (p < 0.05) associations in the C-section-born infants with 'any allergic disease,' IgE-associated disease, eczema and IgE-associated eczema. CONCLUSION: The data indicate that infants born by C-section and having a high hereditary risk for allergies might have a lower risk to manifest IgE-associated eczema at 2 years, but not 5 years of age, when fed breast milk with FUT2-dependent milk oligosaccharides. Further studies with larger cohorts and especially randomized controlled intervention trials are required to build on these preliminary observations.


Subject(s)
Fucosyltransferases/genetics , Hypersensitivity/epidemiology , Hypersensitivity/prevention & control , Milk, Human/chemistry , Oligosaccharides/administration & dosage , Child, Preschool , Double-Blind Method , Eczema/epidemiology , Eczema/prevention & control , Female , Follow-Up Studies , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/prevention & control , Humans , Immunoglobulin E/blood , Incidence , Male , Oligosaccharides/analysis , Prebiotics/administration & dosage , Probiotics/administration & dosage , Risk Factors , Trisaccharides/administration & dosage , Trisaccharides/analysis , Galactoside 2-alpha-L-fucosyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...