Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 93(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-30700599

ABSTRACT

The humoral response to invading mucosal pathogens comprises multiple antibody isotypes derived from systemic and mucosal compartments. To understand the contribution of each antibody isotype/source to the mucosal humoral response, parallel investigation of the specificities and functions of antibodies within and across isotypes and compartments is required. The role of IgA against HIV-1 is complex, with studies supporting a protective role as well as a role for serum IgA in blocking effector functions. Thus, we explored the fine specificity and function of IgA in both plasma and mucosal secretions important to infant HIV-1 infection, i.e., breast milk. IgA and IgG were isolated from milk and plasma from 20 HIV-1-infected lactating Malawian women. HIV-1 binding specificities, neutralization potency, inhibition of virus-epithelial cell binding, and antibody-mediated phagocytosis were measured. Fine-specificity mapping showed IgA and IgG responses to multiple HIV-1 Env epitopes, including conformational V1/V2 and linear V2, V3, and constant region 5 (C5). Env IgA was heterogeneous between the milk and systemic compartments (Env IgA, τ = 0.00 to 0.63, P = 0.0046 to 1.00). Furthermore, IgA and IgG appeared compartmentalized as there was a lack of correlation between the specificities of Env-specific IgA and IgG (in milk, τ = -0.07 to 0.26, P = 0.35 to 0.83). IgA and IgG also differed in functions: while neutralization and phagocytosis were consistently mediated by milk and plasma IgG, they were rarely detected in IgA from both milk and plasma. Understanding the ontogeny of the divergent IgG and IgA antigen specificity repertoires and their effects on antibody function will inform vaccination approaches targeted toward mucosal pathogens.IMPORTANCE Antibodies within the mucosa are part of the first line of defense against mucosal pathogens. Evaluating mucosal antibody isotypes, specificities, and antiviral functions in relationship to the systemic antibody profile can provide insights into whether the antibody response is coordinated in response to mucosal pathogens. In a natural immunity cohort of HIV-infected lactating women, we mapped the fine specificity and function of IgA in breast milk and plasma and compared these with the autologous IgG responses. Antigen specificities and functions differed between IgG and IgA, with antiviral functions (neutralization and phagocytosis) predominantly mediated by the IgG fraction in both milk and plasma. Furthermore, the specificity of milk IgA differed from that of systemic IgA. Our data suggest that milk IgA and systemic IgA should be separately examined as potential correlates of risk. Preventive vaccines may need to employ different strategies to elicit functional antiviral immunity by both antibody isotypes in the mucosa.


Subject(s)
Antiviral Agents/immunology , HIV Infections/immunology , HIV-1/immunology , Immunoglobulin A/immunology , Milk, Human/immunology , Plasma/immunology , AIDS Vaccines/immunology , Antibodies, Neutralizing , Antibody Formation/immunology , Antibody Specificity/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line , Cell Line, Tumor , Epitopes/immunology , Female , HEK293 Cells , HIV Antibodies/immunology , HT29 Cells , Humans , Immunoglobulin G/immunology , Lactation/immunology , Pregnancy
2.
Mucosal Immunol ; 10(1): 228-237, 2017 01.
Article in English | MEDLINE | ID: mdl-27072605

ABSTRACT

We investigated the mucosal distribution and neutralization potency of rhesus recombinant versions of the HIV-specific, broadly neutralizing antibody b12 (RhB12) following intravenous administration to lactating rhesus monkeys. IgG and dimeric IgA (dIgA) administration resulted in high plasma concentrations of broadly neutralizing antibody (bnAb), but the monomeric IgA (mIgA) was rapidly cleared from the systemic compartment. Interestingly, differences in the distribution of the RhB12 isoform were observed between the mucosal compartments. The peak concentration of RhB12 IgG was higher than dIgA in saliva, rectal, and vaginal secretions, but the bnAb concentration in milk was one to two logs higher after dIgA administration than with IgG or mIgA infusion. Neutralization was observed in plasma of all animals, but only those infused with RhB12 dIgA showed moderate levels of virus neutralization in milk. Remarkably, virus-specific secretory IgA was detected in mucosal compartments following dIgA administration. The high milk RhB12 dIgA concentration suggests that passive immunization with dIgA could be more effective than IgG to inhibit virus in breast milk.


Subject(s)
Antibodies, Neutralizing/blood , HIV Antibodies/blood , HIV Infections/immunology , HIV-1/immunology , Immunoglobulin A, Secretory/blood , Mucous Membrane/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Bodily Secretions/immunology , Breast Feeding , Dimerization , Female , HIV Antibodies/administration & dosage , Humans , Immunization, Passive , Immunoglobulin A, Secretory/administration & dosage , Immunoglobulin G/blood , Macaca mulatta , Milk, Human/immunology , Saliva/immunology
3.
J Virol ; 90(10): 4951-4965, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26937027

ABSTRACT

UNLABELLED: Maternal vaccination to induce anti-HIV immune factors in breast milk is a potential intervention to prevent postnatal HIV-1 mother-to-child transmission (MTCT). We previously demonstrated that immunization of lactating rhesus monkeys with a modified vaccinia Ankara (MVA) prime/intramuscular (i.m.) protein boost regimen induced functional IgG responses in milk, while MVA prime/intranasal (i.n.) boost induced robust milk Env-specific IgA responses. Yet, recent studies have suggested that prevention of postnatal MTCT may require both Env-specific IgA and functional IgG responses in milk. Thus, to investigate whether both responses could be elicited by a combined systemic/mucosal immunization strategy, animals previously immunized with the MVA prime/i.n. boost regimen received an i.n./i.m. combined C.1086 gp120 boost. Remarkably, high-magnitude Env-specific IgA responses were observed in milk, surpassing those in plasma. Furthermore, 29% of vaccine-elicited Env-specific B cells isolated from breast milk were IgA isotype, in stark contrast to the overwhelming predominance of IgG isotype Env-specific B cells in breast milk of chronically HIV-infected women. A clonal relationship was identified between Env-specific blood and breast milk B cells, suggesting trafficking of that cell population between the two compartments. Furthermore, IgA and IgG monoclonal antibodies isolated from Env-specific breast milk B cells demonstrated diverse Env epitope specificities and multiple effector functions, including tier 1 neutralization, antibody-dependent cellular cytotoxicity (ADCC), infected cell binding, and inhibition of viral attachment to epithelial cells. Thus, maternal i.n./i.m. combined immunization is a novel strategy to enhance protective Env-specific IgA in milk, which is subsequently transferred to the infant via breastfeeding. IMPORTANCE: Efforts to increase the availability of antiretroviral therapy to pregnant and breastfeeding women in resource-limited areas have proven remarkably successful at reducing HIV vertical transmission rates. However, more than 200,000 children are infected annually due to failures in therapy implementation, monitoring, and adherence, nearly half by postnatal HIV exposure via maternal breast milk. Intriguingly, in the absence of antiretroviral therapy, only 10% of breastfed infants born to HIV-infected mothers acquire the virus, suggesting the existence of naturally protective immune factors in milk. Enhancement of these protective immune factors through maternal vaccination will be a critical strategy to reduce the global pediatric AIDS epidemic. We have previously demonstrated that a high magnitude of HIV Env-specific IgA in milk correlates with reduced risk of infant HIV acquisition. In this study, we describe a novel HIV vaccine regimen that induces potent IgA responses in milk and therefore could potentially protect against breast milk HIV MTCT.


Subject(s)
AIDS Vaccines/immunology , B-Lymphocytes/immunology , HIV Antibodies/analysis , HIV-1/immunology , Immunoglobulin A/analysis , Lactation , Milk/immunology , AIDS Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibody-Dependent Cell Cytotoxicity , Female , HIV Antibodies/blood , HIV Envelope Protein gp120/administration & dosage , HIV Envelope Protein gp120/immunology , Humans , Immunity, Maternally-Acquired , Immunity, Mucosal , Immunization, Secondary , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/analysis , Immunoglobulin G/blood , Immunoglobulin G/immunology , Infant , Macaca mulatta , Pregnancy
4.
Proc Natl Acad Sci U S A ; 112(44): 13645-50, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26483473

ABSTRACT

Elucidation of maternal immune correlates of protection against congenital cytomegalovirus (CMV) is necessary to inform future vaccine design. Here, we present a novel rhesus macaque model of placental rhesus CMV (rhCMV) transmission and use it to dissect determinants of protection against congenital transmission following primary maternal rhCMV infection. In this model, asymptomatic intrauterine infection was observed following i.v. rhCMV inoculation during the early second trimester in two of three rhCMV-seronegative pregnant females. In contrast, fetal loss or infant CMV-associated sequelae occurred in four rhCMV-seronegative pregnant macaques that were CD4(+) T-cell depleted at the time of inoculation. Animals that received the CD4(+) T-cell-depleting antibody also exhibited higher plasma and amniotic fluid viral loads, dampened virus-specific CD8(+) T-cell responses, and delayed production of autologous neutralizing antibodies compared with immunocompetent monkeys. Thus, maternal CD4(+) T-cell immunity during primary rhCMV infection is important for controlling maternal viremia and inducing protective immune responses that prevent severe CMV-associated fetal disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/prevention & control , Infectious Disease Transmission, Vertical , Maternal-Fetal Exchange , Animals , Antibodies, Viral/immunology , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/transmission , Disease Models, Animal , Female , Macaca mulatta , Pregnancy
5.
J Virol ; 88(16): 9406-17, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24920809

ABSTRACT

UNLABELLED: Mucosal epithelial cell surface galactosylceramide (Galcer) has been postulated to be a receptor for HIV-1 envelope (Env) interactions with mucosal epithelial cells. Disruption of the HIV-1 Env interaction with such alternate receptors could be one strategy to prevent HIV-1 entry through the mucosal barrier. To study antibody modulation of HIV-1 Env-Galcer interactions, we used Galcer-containing liposomes to assess whether natural- and vaccine-induced monoclonal antibodies can block HIV-1 Env binding to Galcer. HIV-1 Env gp140 proteins bound to Galcer liposomes with Kds (dissociation constants) in the nanomolar range. Several HIV-1 ALVAC/AIDSVAX vaccinee-derived monoclonal antibodies (MAbs) specific for the gp120 first constant (C1) region blocked Galcer binding of a transmitted/founder HIV-1 Env gp140. Among the C1-specific MAbs that showed Galcer blocking, the antibody-dependent cellular cytotoxicity-mediating CH38 IgG and its natural IgA isotype were the most potent blocking antibodies. C1-specific IgG monoclonal antibodies that blocked Env binding to Galcer induced upregulation of the gp120 CD4-inducible (CD4i) epitope bound by MAb 17B, demonstrating that a conformational change in gp120 may be required for Galcer blocking. However, the MAb 17B itself did not block Env-Galcer binding, suggesting that the C1 antibody-induced gp120 conformational changes resulted in alteration in a Galcer binding site distant from the CD4i 17B MAb binding site. IMPORTANCE: Galactosyl ceramide, a glycosphingolipid, has been postulated to be a receptor for the HIV-1 envelope glycoprotein (Env) interaction with mucosal epithelial cells. Here, we have mimicked this interaction by using an artificial membrane containing synthetic Galcer and recombinant HIV-1 Env proteins to identify antibodies that would block the HIV-1 Env-Galcer interaction. Our study revealed that a class of vaccine-induced human antibodies potently blocks HIV-1 Env-Galcer binding by perturbing the HIV-1 Env conformation.


Subject(s)
AIDS Vaccines/immunology , CD4 Antigens/immunology , Epitopes/immunology , Galactosylceramides/immunology , HIV Envelope Protein gp120/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Antibodies, Monoclonal/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Binding Sites/immunology , HIV Antibodies/immunology , Humans , Immunoglobulin G/immunology , Liposomes/immunology , Protein Binding/immunology
6.
Proc Natl Acad Sci U S A ; 110(45): 18220-5, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24145401

ABSTRACT

Achieving an AIDS-free generation will require elimination of postnatal transmission of HIV-1 while maintaining the nutritional and immunologic benefits of breastfeeding for infants in developing regions. Maternal/infant antiretroviral prophylaxis can reduce postnatal HIV-1 transmission, yet toxicities and the development of drug-resistant viral strains may limit the effectiveness of this strategy. Interestingly, in the absence of antiretroviral prophylaxis, greater than 90% of infants exposed to HIV-1 via breastfeeding remain uninfected, despite daily mucosal exposure to the virus for up to 2 y. Moreover, milk of uninfected women inherently neutralizes HIV-1 and prevents virus transmission in animal models, yet the factor(s) responsible for this anti-HIV activity is not well-defined. In this report, we identify a primary HIV-1-neutralizing protein in breast milk, Tenascin-C (TNC). TNC is an extracellular matrix protein important in fetal development and wound healing, yet its antimicrobial properties have not previously been established. Purified TNC captured and neutralized multiclade chronic and transmitted/founder HIV-1 variants, and depletion of TNC abolished the HIV-1-neutralizing activity of milk. TNC bound the HIV-1 Envelope protein at a site that is induced upon engagement of its primary receptor, CD4, and is blocked by V3 loop- (19B and F39F) and chemokine coreceptor binding site-directed (17B) monoclonal antibodies. Our results demonstrate the ability of an innate mucosal host protein found in milk to neutralize HIV-1 via binding to the chemokine coreceptor site, potentially explaining why the majority of HIV-1-exposed breastfed infants are protected against mucosal HIV-1 transmission.


Subject(s)
Acquired Immunodeficiency Syndrome/transmission , HIV-1/drug effects , Infectious Disease Transmission, Vertical/prevention & control , Milk, Human/chemistry , Tenascin/pharmacology , Acquired Immunodeficiency Syndrome/prevention & control , Blotting, Western , Cell Line , Chromatography, Ion Exchange , Dose-Response Relationship, Drug , Female , Humans , Immunoprecipitation , Inhibitory Concentration 50 , Mass Spectrometry , Tenascin/metabolism , Viral Envelope Proteins/metabolism
7.
J Virol ; 87(12): 6986-99, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23596289

ABSTRACT

We previously demonstrated that vaccination of lactating rhesus monkeys with a DNA prime/vector boost strategy induces strong T-cell responses but limited envelope (Env)-specific humoral responses in breast milk. To improve vaccine-elicited antibody responses in milk, hormone-induced lactating rhesus monkeys were vaccinated with a transmitted/founder (T/F) HIV Env immunogen in a prime-boost strategy modeled after the moderately protective RV144 HIV vaccine. Lactating rhesus monkeys were intramuscularly primed with either recombinant DNA (n = 4) or modified vaccinia virus Ankara (MVA) poxvirus vector (n = 4) expressing the T/F HIV Env C.1086 and then boosted twice intramuscularly with C.1086 gp120 and the adjuvant MF59. The vaccines induced Env-binding IgG and IgA as well as neutralizing and antibody-dependent cellular cytotoxicity (ADCC) responses in plasma and milk of most vaccinated animals. Importantly, plasma neutralization titers against clade C HIV variants MW965 (P = 0.03) and CAP45 (P = 0.04) were significantly higher in MVA-primed than in DNA-primed animals. The superior systemic prime-boost regimen was then compared to a mucosal-boost regimen, in which animals were boosted twice intranasally with C.1086 gp120 and the TLR 7/8 agonist R848 following the same systemic prime. While the systemic and mucosal vaccine regimens elicited comparable levels of Env-binding IgG antibodies, mucosal immunization induced significantly stronger Env-binding IgA responses in milk (P = 0.03). However, the mucosal regimen was not as potent at inducing functional IgG responses. This study shows that systemic MVA prime followed by either intranasal or systemic protein boosts can elicit strong humoral responses in breast milk and may be a useful strategy to interrupt postnatal HIV-1 transmission.


Subject(s)
AIDS Vaccines/administration & dosage , Gene Products, env/immunology , HIV-1/immunology , Immunoglobulin A/biosynthesis , Lactation/immunology , Milk, Human/immunology , Vaccines, DNA/administration & dosage , AIDS Vaccines/genetics , AIDS Vaccines/immunology , Administration, Mucosal , Animals , Antibody Specificity , Antibody-Dependent Cell Cytotoxicity , Cell Line , Female , Gene Products, env/administration & dosage , Humans , Immunization , Immunization, Secondary , Immunoglobulin G/blood , Macaca mulatta , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccinia virus/genetics , Vaccinia virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...