Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0299153, 2024.
Article in English | MEDLINE | ID: mdl-38865295

ABSTRACT

This paper presents the results of bats detected with marine radar and their validation with acoustic detectors in the vicinity of a wind turbine with a hub height of 120 m. Bat detectors are widely used by researchers, even though the common acoustic detectors can cover only a relatively small volume. In contrast, radar technology can overcome this shortcoming by offering a large detection volume, fully covering the rotor-swept areas of modern wind turbines. Our study focused on the common noctule bats (Nyctalus noctula). The measurement setup consisted of a portable X-band pulse radar with a modified radar antenna, a clutter shielding fence, and an acoustic bat detector installed in the wind turbine's nacelle. The radar's detection range was evaluated using an analytical simulation model. We developed a methodology based on a strict set of criteria for selecting suitable radar data, acoustic data and identified bat tracks. By applying this methodology, the study data was limited to time intervals with an average duration of 48 s, which is equal to approximately 20 radar images. For these time intervals, 323 bat tracks were identified. The most common bat speed was extracted to be between 9 and 10 m/s, matching the values found in the literature. Of the 323 identified bat tracks passed within 80 m of the acoustic detector, 32% had the potential to be associated with bat calls due to their timing, directionality, and distance to the acoustic bat detector. The remaining 68% passed within the studied radar detection volume but out of the detection volume of the acoustic bat detector. A comparison of recorded radar echoes with the expected simulated values indicated that the in-flight radar cross-section of recorded common noctule bats was mostly between 1.0 and 5.0 cm2, which is consistent with the values found in the literature for similar sized wildlife.


Subject(s)
Acoustics , Chiroptera , Radar , Wind , Animals , Chiroptera/physiology , Acoustics/instrumentation , Echolocation , Power Plants
2.
PLoS One ; 15(9): e0239911, 2020.
Article in English | MEDLINE | ID: mdl-32997717

ABSTRACT

To develop mitigation measures for the protection of bats in close proximity to onshore wind turbines, new detection techniques covering large-scale environments and techniques, which are able to track individuals are required. Radar based observations, successfully applied in ornithological studies, offer a promising potential, but come with challenges regarding the comparability of measurements and noise interference (ground clutter) from objects within detection range. This paper presents improvements of a commercially available inexpensive pulse radar for 3D spatial detection of bat-sized objects in onshore wind parks. A new analytical spatial detection volume model is presented incorporating calibrated radar data and landscape parameters such as clutter. Computer simulation programs to process the analytical spatial detection volume model were developed. For model calibration, the minimum signal power of the radar was experimentally determined with the radar cross section (RCS) of an artificial bat (similar to Nyctalus noctula), resulting in a maximum detection range of 800 m and a corresponding RCS of 12.7 cm². Additionally, the spatial volume for radar detection was optimized with a clutter shielding fence (CSF). Adjusting the volume model by incorporating a theoretical model of the CSF, an extension of the detection volume by a factor of 2.5 was achieved, while the total volume of a 105° horizontal angular radar image section yields 0.0105 km³. Extrapolation and comparison with state-of-the-art acoustic bat detection result in a 270 times larger volume, confirming the large-scale detection capabilities of the pulse radar.


Subject(s)
Chiroptera/physiology , Models, Theoretical , Algorithms , Animals , Behavior, Animal , Computer Simulation , Radar , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...