Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 266(Pt 2): 131344, 2024 May.
Article in English | MEDLINE | ID: mdl-38574923

ABSTRACT

In this study, we obtained triple-layer films based on furcellaran and gelatin, in which the middle layer was enriched with extract of Curcuma longa in citral. This newly developed material underwent a comprehensive characterisation process to identify significant improvements in its functional properties. Both SEM, XRD and FTIR analyzes indicated the formation of interactions not only between the components but also between the film layers. Notably, the incorporation of the natural extract led to a significant reduction in solubility, decreasing it from 74.79 % to 57.25 %, while enhancing thermal stability expressed as a melting point elevating it from 147.10 °C in the control film to 158.80 °C in the film with the highest concentration of the active ingredient. Simultaneously, the addition of this active ingredient resulted in decreased water contact angle (WCA) values, rendering the film more hydrophilic. The produced films exhibit great promise as packaging materials, particularly within the food industry, and the conducted research is marked by its forward-looking and developmental approach.


Subject(s)
Acyclic Monoterpenes , Alginates , Curcuma , Gelatin , Plant Extracts , Plant Gums , Curcuma/chemistry , Gelatin/chemistry , Plant Extracts/chemistry , Acyclic Monoterpenes/chemistry , Acyclic Monoterpenes/pharmacology , Solubility , Food Packaging/methods , Hydrophobic and Hydrophilic Interactions , Water/chemistry , Spectroscopy, Fourier Transform Infrared
2.
Molecules ; 29(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542954

ABSTRACT

Coffee silverskin is a byproduct of the coffee industry, appearing in large quantities during the roasting step. In this work, a sober and simple water process is proposed, using extractions cycles, to produce valuable products including (a) an extract rich in caffeine, (b) possibly pure caffeine, and (c) insoluble fibers. The hypothetical number of necessary cycles was calculated and compared to the number of cycles used experimentally. Two types of cycles, with and without water compensation, were compared for their water consumption and the amount of caffeine extracted. The use of cycles, with the resulting product from a previous extraction as a solvent for fresh biomass, drove a significant rise in the content of caffeine determined by a UV-visible detector with a spectrophotometer and ultra-performance liquid chromatography (UPLC). After 11 extraction cycles with water compensation, we obtained an extract 4.5 times more concentrated in caffeine (4.25 mg/mL) than after a single extraction (1.03 mg/mL).

3.
J Colloid Interface Sci ; 660: 177-191, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38241866

ABSTRACT

HYPOTHESIS: Specific alkaline cation effects control the area per headgroup of alkylester sulphates, which modifies the spontaneous packing of the surfactants. The resulting effective packing minimizes the total bending energy frustration and results in a Boltzmann distribution of coexisting pseudo-phases. These pseudo-phases constitute of micelles and other structures of complex morphology: cylindrical sections, end-caps, branching points, and bilayers, all in dynamic equilibrium. According to our model, excess of end-caps or excess of branching points lead to low viscosity, whereas comparable amounts of both structures lead to viscosity maxima. Relative occurrence of branching points and end-caps is the molecular mechanism at the origin of the salt-sensitive viscosity peak in the "salt-curve" (viscosity against salt concentration at fixed surfactant concentration). Up to now, and as indicated in former papers, this has been a pure model without microscopic verification. EXPERIMENTS: In this work, we introduce explicit counting of the number of coexisting pseudo-phases as observed by state-of-the-art cryogenic transmission electron microscopy (cryo-TEM). The model system used, i.e., sodium laurylethersulfate (SLES)/salt/water, is very common as part of cosmetic formulations. As added salts, we used Li+, Na+, K+, and Cs+ chlorides. In parallel to imaging, we measured the macroscopic viscosities of the different solutions. FINDINGS: With cryogenic transmission electron microscopy (cryo-TEM), we imaged a variety of morphologies (pseudo-phases) in the different aqueous surfactant/salt solutions: cylindrical micelles with end-caps, discs surrounded by "rims", entangled thread-like micelles with branching points, networks with gliding branching points, and bilayers. The relative chemical potentials of these morphologies could be approximated simply by counting the relative proportion of their occurrence. This simple multi-scale approach avoids any ad-hoc "specificity" assumption of ions, and is based on the bending energy model in an extended version of the Benedek "ladder model". It is capable of explaining and even quantifying the location of all viscosity peaks in the "salt-curves" for the different cations investigated, thus confirming the previously proposed model experimentally, and - thanks to cryo-TEM - for the first time on a microscopic scale. Moreover, this approach can also be applied when the added cations lead to newly observed pseudo-phases, such as discs and vesicles. To the best of our knowledge, this is the first time that cryo-TEM is used, together with a mesoscopic model, to describe a macroscopic property such as viscosity and specific ion effects on it, without any a priori assumption about these effects. So, in total, we could a) confirm the predictions of the previously developed model, b) use cryo-TEM imaging and viscosity measurements to predict and find unusual morphologies when varying the cations of the added salt, and c) count the pseudo-phases in cryo-TEM micrographs to quantitatively explain the different nanostructures.

4.
J Colloid Interface Sci ; 659: 833-848, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218087

ABSTRACT

MOTIVATION: Surfactants like C8E8CH2COOH have such bulky headgroups that they cannot show the common sphere-to-cylinder transition, while surfactants like C18:1E2CH2COOH are mimicking lipids and form only bilayers. Mixing these two types of surfactants allows one to investigate the competition between intramicellar segregation leading to disc-like bicelles and the temperature dependent curvature constraints imposed by the mismatch between heads and tails. EXPERIMENTS: We establish phase diagrams as a function of temperature, surfactant mole ratio, and active matter content. We locate the isotropic liquid-isotropic liquid phase separation common to all nonionic surfactant systems, as well as nematic and lamellar phases. The stability and rheology of the nematic phase is investigated. Texture determination by polarizing microscopy allows us to distinguish between the different phases. Finally, SANS and SAXS give intermicellar distances as well as micellar sizes and shapes present for different compositions in the phase diagrams. FINDINGS: In a defined mole ratio between the two components, intramicellar segregation wins and a viscoelastic discotic nematic phase is present at low temperature. Partial intramicellar mixing upon heating leads to disc growth and eventually to a pseudo-lamellar phase. Further heating leads to complete random mixing and an isotropic phase, showing the common liquid-liquid miscibility gap. This uncommon phase sequence, bicelles, lamellar phase, micelles, and water-poor packed micelles, is due to temperature induced mixing combined with dehydration of the headgroups. This general molecular mechanism explains also why a metastable water-poor lamellar phase quenched by cooling can be easily and reproducibly transformed into a nematic phase by gentle hand shaking at room temperature, as well as the entrapment of air bubbles of any size without encapsulation by bilayers or polymers.

5.
Molecules ; 29(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257207

ABSTRACT

Natural aromas like cinnamaldehyde are suitable solvents to extract curcuminoids, the active ingredients found in the rhizomes of Curcuma longa L. In a pursuit to find other nature-based solvents, capable of solving curcumin, forty fragrances and flavours were investigated in terms of their solubilisation power. Aroma compounds were selected according to their molecular structure and functional groups. Their capabilities of solving curcumin were examined by UV-Vis spectroscopy and COSMO-RS calculations. The trends of these calculations were in accordance with the experimental solubilisation trend of the solubility screening and a list with the respective curcumin concentrations is given; σ-profiles and Gibbs free energy were considered to further investigate the solubilisation process of curcumin, which was found to be based on hydrogen bonding. High curcumin solubility was achieved in the presence of solvent (mixtures) with high hydrogen-bond-acceptor and low hydrogen-bond-donor abilities, like γ- and δ-lactones. The special case of DMSO was also examined, as the highest curcumin solubility was observed with it. Possible specific interactions of selected aroma compounds (citral and δ-hexalactone) with curcumin were investigated via 1H NMR and NOESY experiments. The tested flavours and fragrances were evaluated regarding their potential as green alternative solvents.

6.
Chem Commun (Camb) ; 60(5): 610-613, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38099963

ABSTRACT

Calcium sulfate hemihydrate, also known as bassanite or Plaster of Paris, is one of the most extensively produced inorganic materials worldwide. Nowadays, bassanite is mainly obtained by thermal dehydration of calcium sulfate dihydrate (gypsum) - a process that consumes considerable amounts of energy and thus leaves a significant carbon footprint. Towards a more sustainable future, alternative technologies for bassanite production at low temperatures are therefore urgently required. While successful approaches involving organic solvents have been reported, we chose precipitation from aqueous solutions as a potentially even "greener" way of synthesis. In a previous work, we have shown that spontaneous formation of bassanite in water (in competition with thermodynamically favoured gypsum) can be achieved at 40 °C by the use of additives that maintain specific interactions with calcium sulfate precursors and modulate the local hydration household during crystallisation. The results of the present study demonstrate that bassanite can be obtained via simple precipitation from aqueous solutions at room temperature by the combination of additives acting through orthogonal mechanisms.

7.
Phys Chem Chem Phys ; 25(30): 20728-20736, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37490278

ABSTRACT

A significant synergistic effect is observed when solubilizing curcumin or tetrahydrocurcumin in binary mixtures of ethanol and triacetin. The present work deals with a detailed investigation of the solvent system by means of COSMO-RS-based calculations, dynamic light scattering, small-and-wide-angle X-ray scattering, and dielectric relaxation spectroscopy. Theoretical calculations lead to the conclusion that the enhanced solubility is not primarily the result of an interaction optimum between individual surface charge densities. Scattering experiments also exclude the formation of mesoscopic structures as the main reason. However, dielectric relaxation spectra suggest that in the concentration range of 0.3 ≤ x(triacetin) ≤ 0.6, ethanol molecules are released from their living polymer ethanol network and can interact with triacetin on a molecular level. The mesoscopic aggregation, thus, decreases. The concentration range of the ethanol-triacetin complexes has a significant overlap with the range of maximum solubility of (tetrahydro)curcumin. Nevertheless, despite detailed investigations, the exact origin of the solubilization power of the solvent remains speculative.

8.
J Colloid Interface Sci ; 648: 755-767, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37321095

ABSTRACT

HYPOTHESIS: This article presents a free-radical polymerization method in a mesostructured system - free of any surfactants, protective colloids, or other auxiliary agents. It is applicable for a large variety of industrially relevant vinylic monomers. The aim of this work is to study the impact of surfactant-free mesostructuring on the polymerization kinetics and the polymer derived. EXPERIMENTS: So-called surfactant-free microemulsions (SFME) were investigated as reaction media with a simple composition comprising water, a hydrotrope (ethanol, n-propanol, isopropanol, tert-butyl alcohol), and the monomer as the reactive oil phase (methyl methacrylate). Polymerization reactions were performed using oil-soluble, thermal- and UV-active initiators (surfactant-free microsuspension polymerization) and water-soluble, redox-active initiators (surfactant-free microemulsion polymerization). Structural analysis of the SFMEs used and the polymerization kinetics were followed by dynamic light scattering (DLS). Dried polymers were analyzed with regard to their conversion yield by mass balance, the corresponding molar masses were determined using gel permeation chromatography (GPC), and the morphology was investigated by light microscopy. FINDINGS: All alcohols are suitable hydrotropes to form SFMEs, except for ethanol, which forms a molecularly disperse system. We observe significant differences in the polymerization kinetics and the molar masses of the polymers obtained. Ethanol leads to significantly higher molar masses. Within a system, higher concentrations of the other alcohols investigated give rise to less pronounced mesostructuring, lower conversions, and lower average molar masses. It could be demonstrated that the effective concentration of alcohol in the oil-rich pseudophases as well as the repulsive effect of the surfactant-free, alcohol-rich interphases constitute the relevant factors influencing polymerization. Concerning the morphology, the polymers derived range from powder-like polymers in the so-called "pre-Ouzo region" over porous-solid polymers in the bicontinuous region to dense, almost compacted, transparent polymers in unstructured regions, comparable to the findings for surfactant-based systems reported in the literature. Polymerizations in SFME comprise a new intermediate between well-known solution (i.e., molecularly dispersed) and microemulsion respectively microsuspension polymerization processes.

9.
J Colloid Interface Sci ; 641: 631-642, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36963256

ABSTRACT

HYPOTHESIS: The role of hormones and polyphenolic acids in communication and regulation of biological processes can be linked to their physical-chemical interaction with target compounds and water. Further, the variety of polyphenolic acids suggests adjustable hydrotropic properties of these natural compounds. EXPERIMENTS: Phase transition temperature (PTT) measurements of binary water/di(propylene glycol) n-propyl ether (DPnP) or propylene glycol n-propyl ether (PnP) systems with sodium dehydroepiandrosterone sulfate (NaDHEAS), indole-3-acetate (NaIAA), indole-3-butyrate (NaIBA) - common hormones -, and sodium polyphenolates should unravel their salting-in/-out properties. Their salting-in/-out behavior was compared to the compounds' surface-active and structuring properties via surface tension, dynamic light scattering (DLS) and Nuclear magnetic resonance (NMR) experiments. FINDINGS: All hormone salts were revealed as salting-in agents. PTT, surface tension and DLS measurements indicated surfactant-like behavior of the hormone NaDHEAS, and hydrotropic behavior of NaIAA and NaIBA. The salting-in/-out properties of sodium polyphenolates - in an (anti-)hydrotrope range - are adjustable with functional groups. The (i) absence of nano-structuring in pure water, (ii) the reduction of the DPnP nano-structuring in water in presence of sodium polyphenolates and (iii) the absence of a slope change of the PTT curves at the critical aggregation concentration showed that the DPnP/polyphenolate interactions are of molecular hydrotropic and not of micellar/aggregative nature.


Subject(s)
Plant Growth Regulators , Salts , Salts/chemistry , Sodium Chloride , Surface-Active Agents/chemistry , Sodium , Hormones , Water , Propylene Glycols
10.
Food Chem ; 417: 135944, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36934704

ABSTRACT

The demand for natural vanilla extract, and vanillin in particular, by far exceeds the current production, as both the cultivation of vanilla beans and the extraction of vanillin are laborious. For this purpose, most vanillin used today is produced synthetically, contrary to the general trend toward bio-based products. The present study deals with the synthesis of nature-based vanillin, starting with the more accessible rhizomes of the plant Curcuma longa. Besides vanillin, vanillic acid and p-hydroxybenzaldehyde are synthesized that way, which are also found in the natural vanilla bean. The extraction of the curcuminoids and, finally, their conversion to the flavors are performed using visible light and food-grade chemicals only. A binary mixture of ethanol and triacetin, as well as a surfactant-free microemulsion consisting of water, ethanol, and triacetin, are investigated in this context. The results exceed the literature values for Soxhlet extraction of vanilla beans by a factor > 7.


Subject(s)
Diarylheptanoids , Vanilla , Triacetin , Ethanol , Plant Extracts
11.
Angew Chem Int Ed Engl ; 62(17): e202218775, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36735337

ABSTRACT

The amino alcohol meglumine solubilizes organic compounds in water and enforces the formation of electron donor acceptor (EDA) complexes of haloarenes with indoles, anilines, anisoles or thiols, which are not observed in organic solvents. UV-A photoinduced electron transfer within the EDA complexes induces the mesolytic cleavage of the halide ion and radical recombination of the arenes leading, after rearomatization and proton loss to C-C or C-S coupling products. Depending on the substitution pattern selective and unique cross-couplings are observed. UV and NMR measurements reveal the importance of the assembly for the photoinduced reaction. Enforced EDA aggregate formation in water allows new activation modes for organic photochemical synthesis.

12.
J Colloid Interface Sci ; 630(Pt B): 762-775, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36356444

ABSTRACT

MOTIVATION: The monoammonium salt of glycyrrhizic acid (AGA) is known to form fibrillar hydrogels and few studies regarding self-assembly of AGA have been published. Yet, the understanding of the fibrillar microstructures and the gelation remains vague. Thus, we attempt to achieve a deeper understanding of the microstructures and the gelation process of binary solutions of AGA in water. Further, we examine the effect of ethanol on the microstructures to pave the way for potential enhancement of drug loading in AGA hydrogels. EXPERIMENTS: A partial room temperature phase map of the ternary system AGA/ethanol/water was recorded. Small-angle X-ray and neutron scattering experiments were performed over wide ranges of compositions in both binary AGA/water and ternary AGA/ethanol/water mixtures to get access to the micro-structuring. FINDINGS: Binary aqueous solutions of AGA form birefringent gels consisting of a network of long helical fibrils. 'Infinitely' long negatively charged fibrils are in equilibrium with shorter fibrils (≈25 nm), both of which have a diameter of about 3 nm and are made of around 30 stacks of AGA per helical period (≈9nm), with each stack consisting of two AGA molecules. The interaxial distance (order of magnitude ≈20 nm) varies with an almost two-dimensional swelling law. Addition of ethanol reduces electrostatic repulsion and favors the formation of fibrillar end caps, reducing the average length of shorter fibrils, as well as the formation of small, swollen aggregates. While the gel network built by the long fibrils is resilient to a significant amount of ethanol, all fibrils are finally dissolved into small aggregates above a certain threshold concentration of ethanol (≈30 wt%).


Subject(s)
Ethanol , Hydrogels , Hydrogels/chemistry , Ethanol/chemistry , Glycyrrhizic Acid , Water/chemistry , Sodium Chloride
13.
Langmuir ; 38(34): 10392-10399, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35976253

ABSTRACT

Chemical gardens are self-assembled structures with intricate plant-like morphologies and consist of mineralized membranes, which form spontaneously at interfaces between compartments with dissimilar chemical composition, most typically acidic metal salt and alkaline sodium silicate solutions. While this phenomenon is thought to occur in a number of practical settings, it has also proven to be valuable for investigating transport characteristics in distinct applied systems. For example, coupled diffusion and precipitation processes were monitored in silica gardens based on calcium and iron salts, considered to be models for cement hydration and steel corrosion, respectively. Here we extend these studies to the case of aluminum-based silica gardens, one of the so far less frequently investigated examples of silica gardens. To this end, single macroscopic tubes were prepared in a reproducible way by the controlled addition of sodium silicate solution to a pellet of pressed aluminum nitrate. Continued sampling of the volumes enclosed by and surrounding the formed membraneous structure allowed the time-dependent development of ion concentration gradients to be tracked over extended periods of time, while both the pH and electrochemical potential differences across the membrane were recorded online by immersed probes. The dynamic behavior revealed in this way was finally complemented by ex-situ analyses of the composition of the formed tubes. The collected data shows that the as-prepared tubular structures consist of sodium aluminosilicate phases with certain similarities to zeolites and geopolymers. The emerging tube wall was further found to be permeable to all ionic species present in the system, allowing significant electrochemical potential to be sustained over tens of hours until diffusion had eventually diminished the initially generated gradients. The findings of this work may have important implications for the geochemical fate of natural aluminosilicate sources, the use of such geopolymers in construction applications, and the synthesis and properties of zeolites.

14.
RSC Chem Biol ; 3(2): 250-260, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35360889

ABSTRACT

The stability of proteins in solution poses a great challenge for both technical applications and molecular biology, including neurodegenerative diseases. In this work, a phosphorylated resveratrol material was examined for its anti-aggregation properties in vitro and in vivo. Here, an anti-fibrillation effect could be measured for amyloid beta and human insulin in vitro and general anti-aggregation properties for crude chicken egg white in solution. Using a drosophila fly model for the overexpression of amyloid beta protein, changes in physiological protein aggregation and improved locomotor abilities could be observed in the presence of dietary phosphorylated resveratrol.

15.
J Colloid Interface Sci ; 621: 470-488, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35483179

ABSTRACT

HYPOTHESIS: In a recent paper, we determined the phase behavior of an aqueous solution of octyl ether octaethylene oxide carboxylic acid ([H+][C8E8c-], Akypo™ LF2) and with partial replacement of H+ by Na+ and Ca2+. It was found that even the neat surfactants are liquid at room temperature and that they form only direct micelles for any aqueous content and over large temperature ranges. The aim of the present work was to find an explanation for the clouding in these systems as well as for the coacervation observed at very low surfactant content. We expected that very similar phase diagrams would be found for a full replacement of H+ by the mentioned ions. EXPERIMENTS: We established the respective phase diagrams of the above-mentioned salts in water and determined the structures of the occurring phases in detail with small-and wide-angle X-ray scattering, small-angle neutron scattering, dynamic light scattering, heat flux differential scanning calorimetry, as well as surface tension, ESI-MS, and NMR experiments. FINDINGS: To our surprise, we discovered a new type of nematic phase between an isotropic and a hexagonal phase. Based on the complete description of all occurring phases both in the acidic and the charged surfactant systems, we were able to design a coherent and unified picture of all these phases, including the auto-coacervation at low surfactant concentration, the non-conventional clouding at high temperatures, the unusual liquid crystalline phases in a small domain at high surfactant concentrations, and the Lß phase at low temperatures and at very low water content. It turned out that all phenomena are a consequence of the subtle interplay between a) the packing constraint due to the very large head-group, b) the relatively small hydrocarbon chain and c) the tunable electrostatic interactions versus entropy.


Subject(s)
Micelles , Surface-Active Agents , Carboxylic Acids , Ethylene Oxide , Ions , Surface-Active Agents/chemistry , Water/chemistry
16.
J Colloid Interface Sci ; 618: 206-218, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35338927

ABSTRACT

HYPOTHESIS: Chemical gardens are tubular inorganic structures exhibiting complex morphologies and interesting dynamic properties upon ageing, with coupled diffusion and precipitation processes keeping the systems out of equilibrium for extended periods of time. Calcium-based silica gardens should comprise membranes that mimic the microstructures occurring in ordinary Portland cement and/or silicate gel layers observed around highly reactive siliceous aggregates in concrete. EXPERIMENTS: Single macroscopic silica garden tubes were prepared using pellets of calcium chloride and sodium silicate solution. The composition of the mineralized tubes was characterized by means of various ex-situ techniques, while time-dependent monitoring of the solutions enclosed by and surrounding the membrane gives insight into the spatiotemporal distribution of the different ionic species. The latter data reflect transport properties and precipitation reactions in the system, thus allowing its complex dynamic behavior to be resolved. FINDINGS: The results show that in contrast to the previously studied cases of iron- and cobalt-based silica gardens, the formed calcium silicate membrane is homogeneous and ultimately becomes impermeable to all species except water, hydroxide and sodium ions, resulting in the permanent conservation of considerable concentration gradients across the membrane. The insights gained in this work may help elucidate the nature and mechanisms of ion diffusion in Portland cements and concrete, especially those occurring during initial hydration of calcium silicates and the so-called alkali-silica reaction (ASR), one of the major concrete deterioration mechanisms causing serious problems with respect to the durability of concrete and the restricted use of many potential sources of raw materials.


Subject(s)
Calcium Compounds , Calcium , Calcium/chemistry , Calcium Compounds/chemistry , Materials Testing , Microscopy, Electron, Scanning , Silicates/chemistry , Spectrometry, X-Ray Emission , X-Ray Diffraction
17.
Food Chem ; 372: 131230, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34627088

ABSTRACT

Mentha spicata L. disappears in winter. The lack of fresh mint during the cold season can be a limiting factor for the preparation of mint tea. A fresh taste source that can be kept during winter is mint essential oil. As the oil is not soluble in water, a food-approved, water-soluble essential oil microemulsion was studied, investigating different surfactants, in particular Tween® 60. The challenge was to dissolve an extremely hydrophobic essential oil in a homogeneous, stable, transparent, and spontaneously forming solution of exclusively edible additives without adulterating the original fresh taste of the mint. Making use of the microemulsions' water and oil pseudo-phases, hydrophilic sweeteners and hydrophobic dyes could be incorporated to imitate mint leaf infusions aromatically and visually. The resulting formulation was a concentrate, consisting of ∼ 90% green components, which could be diluted with water or tea to obtain a beverage with a pleasant minty taste.


Subject(s)
Mentha , Oils, Volatile , Emulsions , Surface-Active Agents , Water
18.
Molecules ; 26(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34946787

ABSTRACT

A water-free, ternary solvent mixture consisting of a natural deep eutectic solvent (NADES), ethanol, and triacetin was investigated concerning its ability to dissolve and extract curcumin from Curcuma longa L. To this purpose, 11 NADES based on choline chloride, acetylcholine, and proline were screened using UV-vis measurements. A ternary phase diagram with a particularly promising NADES, based on choline chloride and levulinic acid was recorded and the solubility domains of the monophasic region were examined and correlated with the system's structuring via light scattering experiments. At the optimum composition, close to the critical point, the solubility of curcumin could be enhanced by a factor of >1.5 with respect to acetone. In extraction experiments, conducted at the points of highest solubility and evaluated via HPLC, a total yield of ~84% curcuminoids per rhizome could be reached. Through multiple extraction cycles, reusing the extraction solvent, an enrichment of curcuminoids could be achieved while altering the solution. When counteracting the solvent change, even higher concentrated extracts can be obtained.


Subject(s)
Curcuma/chemistry , Curcumin/chemistry , Curcumin/isolation & purification , Ethanol/chemistry , Triacetin/chemistry , Acetylcholine/chemistry , Choline/chemistry , Proline/chemistry , Solubility
19.
Chemistry ; 27(65): 16135-16144, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34590745

ABSTRACT

Chemical gardens are self-assembled tubular precipitates formed by a combination of osmosis, buoyancy, and chemical reaction, and thought to be capable of catalyzing prebiotic condensation reactions. In many cases, the tube wall is a bilayer structure with the properties of a diaphragm and/or a membrane. The interest in silica gardens as microreactors for materials science has increased over the past decade because of their ability to create long-lasting electrochemical potential. In this study, we have grown single macroscopic tubes based on calcium carbonate and monitored their time-dependent behavior by in situ measurements of pH, ionic concentrations inside and outside the tubular membranes, and electrochemical potential differences. Furthermore, we have characterized the composition and structure of the tubular membranes by using ex situ X-ray diffraction, infrared and Raman spectroscopy, as well as scanning electron microscopy. Based on the collected data, we propose a physicochemical mechanism for the formation and ripening of these peculiar CaCO3 structures and compare the results to those of other chemical garden systems. We find that the wall of the macroscopic calcium carbonate tubes is a bilayer of texturally distinct but compositionally similar calcite showing high crystallinity. The resulting high density of the material prevents macroscopic calcium carbonate gardens from developing significant electrochemical potential differences. In the light of these observations, possible implications in materials science and prebiotic (geo)chemistry are discussed.


Subject(s)
Calcium Carbonate , Minerals , Microscopy, Electron, Scanning , Spectrum Analysis, Raman , X-Ray Diffraction
20.
Adv Colloid Interface Sci ; 294: 102476, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34229180

ABSTRACT

In his 1916 land-mark paper "Hydrotropic appearances", Carl Neuberg coined the term "hydrotropy", referring to the solubilisation effect of hydrophobic molecules by small, amphiphilic compounds. In this voluminous work he examines 43 different compounds for their hydrotropic effect and touches on many aspects that later became relevant to hydrotrope science (e.g. applications in pharma, green chemistry, pre-ouzo effect, etc.). Given the significance of his work, it is still widely cited today. However, poor availability and a potential language barrier will severely limit the accessibility for international researchers. Therefore, this translation into the English language seeks to provide access to both, his original thoughts as well as his prolific experimental work on this topic.

SELECTION OF CITATIONS
SEARCH DETAIL
...