Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 80, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38200107

ABSTRACT

Vagus nerve signaling is a key component of the gut-brain axis and regulates diverse physiological processes that decline with age. Gut to brain vagus firing patterns are regulated by myenteric intrinsic primary afferent neuron (IPAN) to vagus neurotransmission. It remains unclear how IPANs or the afferent vagus age functionally. Here we identified a distinct ageing code in gut to brain neurotransmission defined by consistent differences in firing rates, burst durations, interburst and intraburst firing intervals of IPANs and the vagus, when comparing young and aged neurons. The aminosterol squalamine changed aged neurons firing patterns to a young phenotype. In contrast to young neurons, sertraline failed to increase firing rates in the aged vagus whereas squalamine was effective. These results may have implications for improved treatments involving pharmacological and electrical stimulation of the vagus for age-related mood and other disorders. For example, oral squalamine might be substituted for or added to sertraline for the aged.


Subject(s)
Sensory Receptor Cells , Sertraline , Cholestanols , Vagus Nerve
2.
Biol Psychiatry ; 95(4): 310-318, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37839790

ABSTRACT

Second only to early life, adolescence is a period of dramatic change and growth. For the developing young adult, this occurs against a backdrop of distinct environmental challenges and stressors. A significant body of work has identified an important role for the microbiota-gut-brain (MGB) axis in the development and function of the brain. Given that the MGB axis is both highly plastic during the teenage years and vulnerable to environmental stressors, more attention needs to be drawn to its potential role in the emergence of psychiatric illnesses, many of which first manifest during adolescence. Here, we review the current literature surrounding the developing microbiome, enteric nervous system, vagus nerve, and brain during the adolescent period. We also examine preclinical and clinical research involving the MGB axis during this dynamic developmental window and argue that more research is needed to further understand the role of the MGB in the pathogenesis of brain disorders. Greater understanding of the adolescent MGB axis will open up the exciting potential for new microbial-based therapeutics for the treatment of these often-refractory psychiatric illnesses.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders , Adolescent , Humans , Brain-Gut Axis , Gastrointestinal Microbiome/physiology , Brain
3.
Front Vet Sci ; 9: 855261, 2022.
Article in English | MEDLINE | ID: mdl-35478602

ABSTRACT

It is currently unclear whether potential probiotics such as lactic acid bacteria could affect behavioral problems in birds. To this end, we assessed whether a supplementation of Lactobacillus rhamnosus JB-1 can reduce stress-induced severe feather pecking (SFP), feather damage and fearfulness in adult birds kept for egg laying. In parallel, we assessed SFP genotypic and phenotypic-related immune responses and aromatic amino acid status linked to neurotransmitter production. Social stress aggravated plumage damage, while L. rhamnosus treatment improved the birds' feather cover in non-stressed birds, but did not impact fearfulness. Our data demonstrate the significant impact of L. rhamnosus supplementation on the immune system. L. rhamnosus supplementation induced immunosuppressive regulatory T cells and cytotoxic T cells in both the cecal tonsils and the spleen. Birds exhibiting the SFP phenotype possessed lower levels of cecal tonsils regulatory T cells, splenic T helper cells and a lower TRP:(PHE+TYR). Together, these results suggest that bacteria may have beneficial effects on the avian immune response and may be useful therapeutic adjuncts to counteract SFP and plumage damage, thus increasing animal health and welfare.

4.
Sci Rep ; 11(1): 19538, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34599202

ABSTRACT

In mammals, early-life probiotic supplementation is a promising tool for preventing unfavourable, gut microbiome-related behavioural, immunological, and aromatic amino acid alterations later in life. In laying hens, feather-pecking behaviour is proposed to be a consequence of gut-brain axis dysregulation. Lactobacillus rhamnosus decreases stress-induced severe feather pecking in adult hens, but whether its effect in pullets is more robust is unknown. Consequently, we investigated whether early-life, oral supplementation with a single Lactobacillus rhamnosus strain can prevent stress-induced feather-pecking behaviour in chickens. To this end, we monitored both the short- and long-term effects of the probiotic supplement on behaviour and related physiological parameters. We hypothesized that L. rhamnosus would reduce pecking behaviour by modulating the biological pathways associated with this detrimental behaviour, namely aromatic amino acid turnover linked to neurotransmitter production and stress-related immune responses. We report that stress decreased the proportion of cytotoxic T cells in the tonsils (P = 0.047). Counteracting this T cell depression, birds receiving the L. rhamnosus supplementation significantly increased all T lymphocyte subset proportions (P < 0.05). Both phenotypic and genotypic feather peckers had lower plasma tryptophan concentrations compared to their non-pecking counterparts. The probiotic supplement caused a short-term increase in plasma tryptophan (P < 0.001) and the TRP:(PHE + TYR) ratio (P < 0.001). The administration of stressors did not significantly increase feather pecking in pullets, an observation consistent with the age-dependent onset of pecking behaviour. Despite minimal changes to behaviour, our data demonstrate the impact of L. rhamnosus supplementation on the immune system and the turnover of the serotonin precursor tryptophan. Our findings indicate that L. rhamnosus exerts a transient, beneficial effect on the immune response and tryptophan catabolism in pullets.


Subject(s)
Chickens , Host Microbial Interactions , Immunity , Lacticaseibacillus rhamnosus/physiology , Probiotics , Tryptophan/metabolism , Age Factors , Animals , Behavior, Animal , Biomarkers , Birds , Genetic Association Studies , Genetic Background , Microbiota , Quantitative Trait, Heritable , Stress, Physiological/immunology , Tryptophan/blood
5.
Sci Rep ; 11(1): 21130, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702901

ABSTRACT

The vagus nerve relays mood-altering signals originating in the gut lumen to the brain. In mice, an intact vagus is required to mediate the behavioural effects of both intraluminally applied selective serotonin reuptake inhibitors and a strain of Lactobacillus with antidepressant-like activity. Similarly, the prodepressant effect of lipopolysaccharide is vagus nerve dependent. Single vagal fibres are broadly tuned to respond by excitation to both anti- and prodepressant agents, but it remains unclear how neural responses encode behaviour-specific information. Here we demonstrate using ex vivo experiments that for single vagal fibres within the mesenteric neurovascular bundle supplying the mouse small intestine, a unique neural firing pattern code is common to both chemical and bacterial vagus-dependent antidepressant luminal stimuli. This code is qualitatively and statistically discernible from that evoked by lipopolysaccharide, a non-vagus-dependent antidepressant or control non-antidepressant Lactobacillus strain and are not affected by sex status. We found that all vagus dependent antidepressants evoked a decrease in mean spike interval, increase in spike burst duration, decrease in gap duration between bursts and increase in intra-burst spike intervals. Our results offer a novel neuronal electrical perspective as one explanation for mechanisms of action of gut-derived vagal dependent antidepressants. We expect that our ex vivo individual vagal fibre recording model will improve the design and operation of new, extant electroceutical vagal stimulation devices currently used to treat major depression. Furthermore, use of this vagal antidepressant code should provide a valuable screening tool for novel potential oral antidepressant candidates in preclinical animal models.


Subject(s)
Action Potentials/drug effects , Antidepressive Agents , Lactobacillus/chemistry , Selective Serotonin Reuptake Inhibitors , Vagus Nerve/physiopathology , Animals , Antidepressive Agents/chemistry , Antidepressive Agents/pharmacology , Female , Male , Mice , Mice, Inbred BALB C , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/pharmacology
6.
Sci Rep ; 11(1): 17119, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429482

ABSTRACT

Feather pecking (FP) is a stress-induced neuropsychological disorder of birds. Intestinal dysbiosis and inflammation are common traits of these disorders. FP is, therefore, proposed to be a behavioral consequence of dysregulated communication between the gut and the brain. Probiotic bacteria are known to favorably modulate the gut microbiome and hence the neurochemical and immune components of the gut-brain axis. Consequently, probiotic supplementation represents a promising new therapeutic to mitigate widespread FP in domestic chickens. We monitored FP, gut microbiota composition, immune markers, and amino acids related to the production of neurochemicals in chickens supplemented with Lactobacillus rhamnosus or a placebo. Data demonstrate that, when stressed, the incidence of FP increased significantly; however, L. rhamnosus prevented this increase. L. rhamnosus supplementation showed a strong immunological effect by increasing the regulatory T cell population of the spleen and the cecal tonsils, in addition to limiting cecal microbiota dysbiosis. Despite minimal changes in aromatic amino acid levels, data suggest that catecholaminergic circuits may be an interesting target for further studies. Overall, our findings provide the first data supporting the use of a single-strain probiotic to reduce stress-induced FP in chickens and promise to improve domestic birds' welfare.


Subject(s)
Chickens/microbiology , Lacticaseibacillus rhamnosus/pathogenicity , Poultry Diseases/microbiology , Probiotics/therapeutic use , Stress, Psychological/microbiology , Animals , Catecholamines/metabolism , Chickens/physiology , Gastrointestinal Microbiome , Palatine Tonsil/immunology , Poultry Diseases/therapy , Probiotics/administration & dosage , Spleen/immunology , Stress, Psychological/therapy
7.
J Parkinsons Dis ; 10(4): 1477-1491, 2020.
Article in English | MEDLINE | ID: mdl-32925094

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder thought to be caused by accumulation of α-synuclein (α-syn) within the brain, autonomic nerves, and the enteric nervous system (ENS). Involvement of the ENS in PD often precedes the onset of the classic motor signs of PD by many years at a time when severe constipation represents a major morbidity. Studies conducted in vitro and in vivo, have shown that squalamine, a zwitterionic amphipathic aminosterol, originally isolated from the liver of the dogfish shark, effectively displaces membrane-bound α-syn. OBJECTIVE: Here we explore the electrophysiological effect of squalamine on the gastrointestinal (GI) tract of mouse models of PD engineered to express the highly aggregating A53T human α-syn mutant. METHODS: GI motility and in vivo response to oral squalamine in PD model mice and controls were assessed using an in vitro tissue motility protocol and via fecal pellet output. Vagal afferent response to squalamine was measured using extracellular mesenteric nerve recordings from the jejunum. Whole cell patch clamp was performed to measure response to squalamine in the myenteric plexus. RESULTS: Squalamine effectively restores disordered colonic motility in vivo and within minutes of local application to the bowel. We show that topical squalamine exposure to intrinsic primary afferent neurons (IPANs) of the ENS rapidly restores excitability. CONCLUSION: These observations may help to explain how squalamine may promote gut propulsive activity through local effects on IPANs in the ENS, and further support its possible utility in the treatment of constipation in patients with PD.


Subject(s)
Constipation/drug therapy , Electrophysiological Phenomena/drug effects , Enteric Nervous System/drug effects , Gastrointestinal Motility/drug effects , Myenteric Plexus/drug effects , Neurons, Afferent/drug effects , Parkinson Disease/complications , Vagus Nerve/drug effects , Animals , Cholestanols/administration & dosage , Cholestanols/pharmacology , Constipation/etiology , Disease Models, Animal , Jejunum/innervation , Mice , Mice, Transgenic , Mutant Proteins , Neurons, Afferent/cytology , Patch-Clamp Techniques , alpha-Synuclein/metabolism
8.
Sci Rep ; 10(1): 12978, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32737381

ABSTRACT

The gut-microbiota-brain axis is implicated in the development of behavioural disorders in mammals. As such, its potential role in disruptive feather pecking (FP) in birds cannot be ignored. Birds with a higher propensity to perform FP have distinct microbiota profiles and feed transit times compared to non-pecking counterparts. Consequently, we hypothesize that the gut microbiota is intimately linked to FP and gut motility, which presents the possibility of using probiotics to control FP behaviour. In the present study, we aim to assess the relationship between cecal motility and the probiotic Lactobacillus rhamnosus in chickens classified as peckers (P, 13 birds) and non-peckers (NP, 17 birds). We show that cecal contractions were 68% less frequent and their amplitude increased by 58% in the presence of L. rhamnosus. Furthermore, the number of FP bouts performed by P birds was positively correlated with contraction velocity and amplitude. We present the first account of gut motility measurements in birds with distinct FP phenotypes. Importantly, the present work demonstrates the clear impact of a probiotic on cecal contractions. These findings lay the foundation for identifying biological differences between P and NP birds which will support the development of FP control strategies.


Subject(s)
Cecum , Chickens/physiology , Feathers , Gastrointestinal Microbiome/physiology , Gastrointestinal Motility , Lacticaseibacillus rhamnosus , Probiotics/pharmacology , Animals , Cecum/microbiology , Cecum/physiology , Female , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology
9.
Neuropharmacology ; 170: 108067, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32224131

ABSTRACT

There is accumulating evidence that certain gut microbes modulate brain chemistry and have antidepressant-like behavioural effects. However, it is unclear which brain regions respond to bacteria-derived signals or how signals are transmitted to distinct regions. We investigated the role of the vagus in mediating neuronal activation following oral treatment with Lactobacillus rhamnosus (JB-1). Male Balb/c mice were orally administered a single dose of saline or a live or heat-killed preparation of a physiologically active bacterial strain, Lactobacillus rhamnosus (JB-1). 165 min later, c-Fos immunoreactivity in the brain was mapped, and mesenteric vagal afferent fibre firing was recorded. Mice also underwent sub-diaphragmatic vagotomy to investigate whether severing the vagus prevented JB-1-induced c-Fos expression. Finally, we examined the ΔFosB response following acute versus chronic bacterial treatment. While a single exposure to live and heat-killed bacteria altered vagal activity, only live treatment induced rapid neural activation in widespread but distinct brain regions, as assessed by c-Fos expression. Sub-diaphragmatic vagotomy abolished c-Fos immunoreactivity in most, but not all, previously responsive regions. Chronic, but not acute treatment induced a distinct pattern of ΔFosB expression, including in previously unresponsive brain regions. These data identify that specific brain regions respond rapidly to gut microbes via vagal-dependent and independent pathways, and demonstrate that acute versus long-term exposure is associated with differential responses in distinct brain regions.


Subject(s)
Brain/metabolism , Brain/microbiology , Lacticaseibacillus rhamnosus/metabolism , Neurons/metabolism , Neurons/microbiology , Vagus Nerve/metabolism , Vagus Nerve/microbiology , Administration, Oral , Animals , Male , Mice , Mice, Inbred BALB C , Vagotomy/trends , Vagus Nerve/surgery
10.
PLoS One ; 15(1): e0225481, 2020.
Article in English | MEDLINE | ID: mdl-31910436

ABSTRACT

Microvesicles are small lipid, bilayer structures (20-400 nm in diameter) secreted by bacteria, fungi, archaea and parasites involved in inter-bacterial communication and host-pathogen interactions. Lactobacillus reuteri DSM-17938 (DSM) has been shown to have clinical efficacy in the treatment of infantile colic, diarrhea and constipation. We have shown previously that luminal administration to the mouse gut promotes reduction of jejunal motility but increases that in the colon. The production of microvesicles by DSM has been characterized, but the effect of these microvesicles on gastrointestinal motility has yet to be evaluated. To investigate a potential mechanism for the effects of DSM on the intestine, the bacteria and its products have here been tested for changes in velocity, frequency, and amplitude of contractions in intact segments of jejunum and colon excised from mice. The effect of the parent bacteria (DSM) was compared to the conditioned media in which it was grown, and the microvesicles it produced. The media used to culture the bacteria (broth) was tested as a negative control and the conditioned medium was tested after the microvesicles had been removed. DSM, conditioned medium, and the microvesicles all produced comparable effects in both the jejunum and the colon. The treatments individually decreased the velocity and frequency of propagating contractile cluster contractions in the jejunum and increased them in the colon to a similar degree. The broth control had little effect in both tissues. Removal of the microvesicles from the conditioned medium almost completely eradicated their effect on motility in both tissues. These results show that the microvesicles from DSM alone can completely reproduce the effects of the whole bacteria on gut motility. Furthermore, they suggest a new approach to the formulation of orally active bacterial therapeutics and offer a novel way to begin to identify the active bacterial components.


Subject(s)
Cell-Derived Microparticles/metabolism , Limosilactobacillus reuteri/metabolism , Probiotics/metabolism , Animals , Colic/metabolism , Colic/microbiology , Colon/microbiology , Constipation/metabolism , Constipation/microbiology , Diarrhea/metabolism , Diarrhea/microbiology , Gastrointestinal Motility/genetics , Humans , Jejunum/metabolism , Jejunum/microbiology , Mice
11.
Sci Rep ; 9(1): 14290, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31582799

ABSTRACT

The vagus nerve can transmit signals to the brain resulting in a reduction in depressive behavior as evidenced by the long-term beneficial effects of electrical stimulation of the vagus in patients with intractable depression. The vagus is the major neural connection between gut and brain, and we have previously shown that ingestion of beneficial bacteria modulates behaviour and brain neurochemistry via this pathway. Given the high levels of serotonin in the gut, we considered if gut-brain signaling, and specifically the vagal pathway, might contribute to the therapeutic effect of oral selective serotonin reuptake inhibitors (SSRI). Mesenteric nerve recordings were conducted in mice after treatment with SSRI to ascertain if this class of drugs resulted in increased vagal excitability. Patch clamp recordings of enteric neurons were carried out to measure activity of primary afferent neurons in the gut in response to SSRI and to assess the importance of gut epithelium in transducing signal. The tail suspension test (TST) was used following 14d feeding of SSRI in vagotomised and surgical sham mice to measure depressive-like behaviour. Brain mRNA expression was examined via PCR and the intestinal microbiome was assessed. Mesenteric nerve recordings in BALB/c mice demonstrated that oral treatment with SSRI leads to a significant increase in vagal activity. This effect was not observed in mice treated with a representative noradrenaline-dopamine reuptake inhibitor. It is known that signals from the gut can be transmitted to the vagus via the enteric nervous system. Exposure of the gut to SSRI increased the excitability of intrinsic primary afferent neurons in the myenteric plexus, through an intestinal epithelium dependent mechanism, and alpha-diversity of gut microbiota was altered. Critically, blocking vagal signaling from gut to brain, via subdiaphragmatic vagotomy, abolished the antidepressive effects of oral SSRI treatment as determined by the tail suspension test. This work suggests that vagus nerve dependent gut-brain signaling contributes to the effects of oral SSRI and further, highlights the potential for pharmacological approaches to treatment of mood disorders that focus on vagal stimulation and may not even require therapeutic agents to enter the circulation.


Subject(s)
Brain/drug effects , Enteric Nervous System/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Vagus Nerve/drug effects , Administration, Oral , Animals , Brain/physiology , Digestive System/drug effects , Digestive System/innervation , Enteric Nervous System/physiology , Male , Mice , Mice, Inbred BALB C , Neurons, Afferent/drug effects , Neurons, Afferent/physiology , Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/administration & dosage , Vagus Nerve/physiology
12.
Front Neurosci ; 13: 955, 2019.
Article in English | MEDLINE | ID: mdl-31551703

ABSTRACT

There is a general decline in gastrointestinal function in old age including decreased intestinal motility, sensory signaling, and afferent sensitivity. There is also increased prevalence of significant constipation in aged populations. We hypothesized this may be linked to reduced colonic motility and alterations in vagal-gut-brain sensory signaling. Using in vitro preparations from young (3 months) and old (18-24 months) male CD1 mice we report functional age-related differences in colonic motility and jejunal mesenteric afferent firing. Furthermore, we tested the effect of the aminosterol squalamine on colonic motility and jejunal vagal firing rate. Old mice had significantly reduced velocity of colonic migrating motor complexes (MMC) by 27% compared to young mice (p = 0.0161). Intraluminal squalamine increased colonic MMC velocity by 31% in old mice (p = 0.0150), which also had significantly reduced mesenteric afferent single-unit firing rates from the jejunum by 51% (p < 0.0001). The jejunal vagal afferent firing rate was reduced in aged mice by 62% (p = 0.0004). While the time to peak response to squalamine was longer in old mice compared to young mice (18.82 ± 1.37 min vs. 12.95 ± 0.99 min; p = 0.0182), it significantly increased vagal afferent firing rate by 36 and 56% in young and old mice, respectively (p = 0.0006, p = 0.0013). Our results show for the first time that the jejunal vagal afferent firing rate is reduced in aged-mice. They also suggest that there is translational potential for the therapeutic use of squalamine in the treatment of age-related constipation and dysmotility.

13.
Front Vet Sci ; 6: 209, 2019.
Article in English | MEDLINE | ID: mdl-31316999

ABSTRACT

Research into the role of tryptophan (TRP) breakdown away from the serotonergic to the kynurenine (KYN) pathway by stimulating the brain-endocrine-immune axis system interaction has brought new insight into potential etiologies of certain human behavioral and mental disorders. TRP is involved in inappropriate social interactions, such as feather-destructive pecking behavior (FP) in birds selected for egg laying. Therefore, our goal was to determine the effect of social disruption stress on FP and the metabolism of the amino acids TRP, phenylalanine (PHE), tyrosine (TYR), their relevant ratios, and on large neutral amino acids which are competitors with regard to their transport across the blood-brain barriers, at least in the human system, in adolescent birds selected for and against FP behavior. We used 160 laying hens selected for high (HFP) or low (LFP) FP activity and an unselected control line (UC). Ten pens with 16 individuals each (4 HFP birds; 3 LFP birds; 9 UC birds) were used. At 16 weeks of age, we disrupted the groups twice in 5 pens by mixing individuals with unfamiliar birds to induce social stress. Blood plasma was collected before and after social disruption treatments, to measure amino acid concentrations. Birds FP behavior was recorded before and after social disruption treatments. HFP birds performed significantly more FP and had lower KYN/TRP ratios. We detected significantly higher FP activity and significantly lower plasma PHE/TYR ratios and a trend to lower KYN/TRP ratios in socially disrupted compared to control pens. This might indicate that activating insults for TRP catabolism along the KYN axis in laying hens differs compared to humans and points toward the need for a more detailed analysis of regulatory mechanisms to understand the role of TRP metabolism for laying hen immune system and brain function.

14.
Front Vet Sci ; 6: 230, 2019.
Article in English | MEDLINE | ID: mdl-31355217

ABSTRACT

Repetitive pecking at the feather cover of other birds (FP) is one of the most important welfare problems in domestic birds. It is not only characterized by motor symptoms, but also by an innate vulnerability of the serotonergic system. Moreover, the serotonergic system influences cognitive function. Acute tryptophan depletion (ATD) is a widely used method for studying serotonergic function in mammals and has been recently validated in birds. However, a tryptophan-deficient amino acid mixture has never been tested on groups of birds to impact their social behavior, including repetitive feather pecking, nor has it been given to potentially impact their cognition and motor performance. One hundred and sixty White Leghorn laying hens consisting of two genetic lines divergently selected to perform high (H) or low (L) levels of FP, and an unselected control line (UC), were kept in 10 groups consisting of 4 H, 3 L, and 9 UC genotypes. In a counterbalanced order, half of the groups were first subjected to an ATD treatment, while the other half were first given a balanced control (BC) treatment, and vice versa, after which their feather pecking behavior was observed. The effect of ATD/BC on repetitive pecking, motor performance, and cognition was investigated in a 5-s delayed reward task in an operant chamber with 10 phenotypic feather peckers, 10 recipients of feather pecking, and 10 bystanders (who neither performed nor received feather pecks). ATD given to groups of birds induced gentle, repetitive feather pecking in all genotypes. Following ATD, phenotypic feather peckers performed more poorly during the delayed reward task, as seen by their higher number of repetitive, non-rewarded key, and non-key pecks in the operant chamber. In conclusion, ATD impacted the hens' social behavior by increasing the number of repetitive gentle feather pecks at conspecifics. Furthermore, feather peckers were more likely to peck while waiting for a reward after ATD, suggesting a role for the serotonergic system on cognition in these birds.

15.
PLoS One ; 14(4): e0215151, 2019.
Article in English | MEDLINE | ID: mdl-31017915

ABSTRACT

BACKGROUND: Stress causes severe dysmotility in the mammalian gut. Almost all research done to date has concentrated on prevention of stress-induced altered gut motility but not on treatment. We had previously shown that intraluminal 2'FL could acutely moderate propulsive motility in isolated mouse colonic segments. Because 2'FL appeared to modulate enteric nervous system dependent motility, we wondered if the oligosaccharide could reverse the effects of prior restraint stress, ex vivo. We tested whether 2'FL could benefit the dysmotility of isolated jejunal and colonic segments from animals subjected to prior acute restraint stress. METHODS: Jejunal and colonic segments were obtained from male Swiss Webster mice that were untreated or subjected to 1 hour of acute restraint stress. Segments were perfused with Krebs buffer and propagating contractile clusters (PCC) digitally video recorded. 2'FL or ß-lactose were added to the perfusate at a concentration of 1 mg/ml. Spatiotemporal maps were constructed from paired before and after treatment recordings, each consisting of 20 min duration and PCC analyzed for frequency, velocity and amplitude. KEY RESULTS: Stress decreased propulsive motility in murine small intestine while increasing it in the colon. 2'FL in jejunum of previously stressed mice produced a 50% increase in PCC velocity (p = 0.0001), a 43% increase in frequency (p = 0.0002) and an insignificant decrease in peak amplitude. For stressed colon, 2'FL reduced the frequency by 23% (p = 0.017) and peak amplitude by 26% (p = 0.011), and was without effect on velocity. ß-lactose had negligible or small treatment effects. CONCLUSIONS & INFERENCES: We show that the prebiotic 2'FL may have potential as a treatment for acute stress-induced gut dysmotility, ex vivo, and that, as is the case for certain beneficial microbes, the mechanism occurs in the gut, likely via action on the enteric nervous system.


Subject(s)
Feces/chemistry , Gastrointestinal Motility/drug effects , Stress, Psychological , Trisaccharides/pharmacology , Animals , Male , Mice , Restraint, Physical
16.
Brain Behav Immun ; 77: 7-15, 2019 03.
Article in English | MEDLINE | ID: mdl-30582961

ABSTRACT

The use of antibiotics has recently risen to prominence in neuroscience due to their potential value in studying the microbiota-gut-brain axis. In this context they have been largely employed to illustrate the many influences of the gut microbiota on brain function and behaviour. Much of this research is bolstered by the abnormal behaviour seen in germ-free animals and other well-controlled experiments. However, this literature has largely failed to consider the neuroactive potential of antibiotics themselves, independent from, or in addition to, their microbicidal effects. This is problematic, as clinical as well as experimental literature, largely neglected through the past decade, has clearly demonstrated that broad classes of antibiotics are neuroactive or neurotoxic. This is true even for some antibiotics that are widely regarded as not absorbed in the intestinal tract, and is especially concerning when considering the highly-concentrated and widely-ranging doses that have been used. In this review we will critically survey the clinical and experimental evidence that antibiotics may influence a variety of nervous system functions, from the enteric nervous system through to the brain and resultant behaviour. We will discuss substantial evidence which clearly suggests neuro-activity or -toxicity by most classes of antibiotics. We will conclude that, while evidence for the microbiota-gut-brain axis remains strong, clinical and experimental studies which employ antibiotics to probe it must consider this potential confound.


Subject(s)
Anti-Bacterial Agents/pharmacology , Brain/drug effects , Gastrointestinal Microbiome/physiology , Animals , Brain/physiology , Central Nervous System/drug effects , Central Nervous System Depressants/metabolism , Enteric Nervous System/drug effects , Gastrointestinal Tract/microbiology , Humans , Intestines/microbiology , Microbiota/physiology , Nervous System/drug effects
17.
Biol Rev Camb Philos Soc ; 93(1): 390-403, 2018 02.
Article in English | MEDLINE | ID: mdl-28675687

ABSTRACT

This review covers the field of olfaction and chemosensation of odorants and puts this information into the context of interactions between microbes and behaviour; the microbiome-gut-brain axis (MGBA). Recent emphasis has also been placed on the concept of the holobiome which states that no single aspect of an organism should be viewed separately and thus must include examination of their associated microbial populations and their influence. While it is known that the microbiome may be involved in the modulation of animal behaviour, there has been little systematized effort to incorporate into such studies the rapidly developing knowledge of the wide range of olfactory systems. The classical olfactory system is evolutionarily conserved in multiple taxa from insects through to fish, reptiles and mammals, and is represented by the largest gene families in vertebrates. Mice have over 1000 different olfactory receptors and humans about 400. They are distributed throughout the body and are even found in spermatozoa where they function in chemotaxis. Each olfactory receptor has the unique functional capability of high-affinity binding to several different molecular ligands. These and other properties render the cataloguing of odorants (odorome) with specific actions a difficult task. Some ectopic olfactory receptors have been shown to have functional effects in the gut and kidney, highlighting the complexity of the systems engaged by odorants. However, there are, in addition to classical olfactory receptors, at least two other families of receptors involved in olfaction that are also widely found expressed on tissues in many different organs in addition to the nervous system and brain: the trace-amine associated and formyl peptide receptors. Bacteria can make many if not most odorants and are responsible for recognition of species and relative relatedness, as well as predator presence, among many other examples. Activation of different combinations of olfactory receptors by bacterial products such as ß-phenylethylamine have been shown even to control expression of emotions such as fear and aggression. The number of examples of bacterial products and volatile odorants influencing brain function and behaviour is expanding rapidly. Since it is recognized that many different bacterial products and metabolites also function as social cues, and may themselves be directly or indirectly causative of behavioural change, it becomes ever more important to include olfaction into studies of the MGBA. Clearly there are broader implications for the involvement of olfaction in this rapidly evolving field. These include improvement in our understanding of the pathways engaged in various behaviours, and the identification of novel approaches and new targets in efforts to modulate behavioural changes.


Subject(s)
Brain/physiology , Gastrointestinal Microbiome/physiology , Receptors, Odorant/physiology , Smell/physiology , Animals , Humans , Signal Transduction
18.
Front Neurosci ; 11: 588, 2017.
Article in English | MEDLINE | ID: mdl-29104530

ABSTRACT

Antibiotic-mediated changes to the intestinal microbiome have largely been assumed to be the basis of antibiotic-induced neurophysiological and behavioral changes. However, relatively little research has addressed whether antibiotics act directly on the host nervous system to produce these changes. We aimed to identify whether acute exposure of the gastrointestinal tract to antibiotics directly modulates neuronally dependent motility reflexes, ex vivo. Motility of colon and jejunum segments in a perfusion organ bath was recorded by video and alterations to neuronally dependent propagating contractile clusters (PCC), measured using spatiotemporal maps of diameter changes. Short latency (<10 min) changes to PCC serve as an index of putative effects on the host nervous system. Bacitracin, penicillin V, and neomycin, all produced dose-dependent alterations to the velocity, frequency, and amplitude of PCC. Most significantly, colonic PCC velocity increased by 53% [probability of superiority (PS) = 87%] with 1.42 mg/ml bacitracin, 19% (PS = 81%) with 0.91 mg/ml neomycin, and 19% (PS = 86%) with 3.88 mg/ml penicillin V. Colonic frequency increased by 16% (PS = 73%) with 1.42 mg/ml bacitracin, 21% (PS = 79%) with 0.91 mg/ml neomycin, and 34% (PS = 85%) at 3.88 mg/ml penicillin V. Conversely, colonic amplitude decreased by 41% (PS = 79%) with 1.42 mg/ml bacitracin, 30% (PS = 80%) with 0.27 mg/ml neomycin and 25% (PS = 79%) at 3.88 mg/ml penicillin V. In the jejunum, antibiotic-specific changes were identified. Taken together, our findings provide evidence that acute exposure of the gastrointestinal lumen to antibiotics modulates neuronal reflexes. Future work should acknowledge the importance of this mechanism in mediating antibiotic-driven changes on gut-brain signaling.

19.
BMC Med ; 14: 58, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27090095

ABSTRACT

INTRODUCTION: The microbiota-gut-brain axis is a term that is commonly used and covers a broad set of functions and interactions between the gut microbiome, endocrine, immune and nervous systems and the brain. The field is not much more than a decade old and so large holes exist in our knowledge. DISCUSSION: At first sight it appears gut microbes are largely responsible for the development, maturation and adult function of the enteric nervous system as well as the blood brain barrier, microglia and many aspects of the central nervous system structure and function. Given the state of the art in this exploding field and the hopes, as well as the skepticism, which have been engendered by its popular appeal, we explore recent examples of evidence in rodents and data derived from studies in humans, which offer insights as to pathways involved. Communication between gut and brain depends on both humoral and nervous connections. Since these are bi-directional and occur through complex communication pathways, it is perhaps not surprising that while striking observations have been reported, they have often either not yet been reproduced or their replication by others has not been successful. CONCLUSIONS: We offer critical and cautionary commentary on the available evidence, and identify gaps in our knowledge that need to be filled so as to achieve translation, where possible, into beneficial application in the clinical setting.


Subject(s)
Brain , Enteric Nervous System , Gastrointestinal Microbiome , Gastrointestinal Tract , Neuroimmunomodulation , Brain/physiology , Feces , Humans
20.
PLoS One ; 11(3): e0152443, 2016.
Article in English | MEDLINE | ID: mdl-27022966

ABSTRACT

The nervous and immune systems communicate bidirectionally, utilizing diverse molecular signals including cytokines and neurotransmitters to provide an integrated response to changes in the body's internal and external environment. Although, neuro-immune interactions are becoming better understood under inflammatory circumstances and it has been evidenced that interaction between neurons and T cells results in the conversion of encephalitogenic T cells to T regulatory cells, relatively little is known about the communication between neurons and naïve T cells. Here, we demonstrate that following co-culture of naïve CD4+ T cells with superior cervical ganglion neurons, the percentage of Foxp3 expressing CD4+CD25+ cells significantly increased. This was mediated in part by immune-regulatory cytokines TGF-ß and IL-10, as well as the neuropeptide calcitonin gene-related peptide while vasoactive intestinal peptide was shown to play no role in generation of T regulatory cells. Additionally, T cells co-cultured with neurons showed a decrease in the levels of pro-inflammatory cytokine IFN-γ released upon in vitro stimulation. These findings suggest that the generation of Tregs may be promoted by naïve CD4+ T cell: neuron interaction through the release of neuropeptide CGRP.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Forkhead Transcription Factors/metabolism , Neurons/metabolism , Superior Cervical Ganglion/cytology , T-Lymphocytes, Regulatory/metabolism , Animals , Coculture Techniques , Female , Interferon-gamma/biosynthesis , Interleukin-2/pharmacology , Mice, Inbred BALB C , Nerve Growth Factor/pharmacology , Neurons/drug effects , T-Lymphocytes, Regulatory/drug effects , Up-Regulation/drug effects , Vasoactive Intestinal Peptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...