Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37630576

ABSTRACT

Recanalization therapy is the most effective treatment for eligible patients with acute ischemic stroke (AIS). Gut microbiota are involved in the pathological mechanisms and outcomes of AIS. However, the association of gut microbiota features with adverse recanalization therapy outcomes remains unclear. Herein, we investigated gut microbiota features associated with neurological deficits in patients with AIS after recanalization therapy and whether they predict the patients' functional outcomes. We collected fecal samples from 51 patients with AIS who received recanalization therapy and performed 16S rRNA gene sequencing (V3-V4). We compared the gut microbiota diversity and community composition between mild to moderate and severe disability groups. Next, the characteristic gut microbiota was compared between groups, and we noted that the characteristic gut microbiota in patients with mild to moderate disability included Bilophila, Butyricimonas, Oscillospiraceae_UCG-003, and Megamonas. Moreover, the relative abundance of Bacteroides fragilis, Fusobacterium sp., and Parabacteroides gordonii was high in patients with severe disability. The characteristic gut microbiota was correlated with neurological deficits, and areas under the receiver operating characteristic curves confirmed that the characteristic microbiota predicted adverse recanalization therapy outcomes. In conclusion, gut microbiota characteristics are correlated with recanalization therapy outcomes in patients with AIS. Gut microbiota may thus be a promising biomarker associated with early neurological deficits and predict recanalization therapy outcomes.

2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445971

ABSTRACT

Bidirectional communication of the microbiota-gut-brain axis is crucial in stroke. Recanalization therapy, namely intravenous thrombolysis (IVT) and endovascular thrombectomy (EVT), are recommended for eligible patients with acute ischemic stroke (AIS). It remains unclear whether gut microbiota metabolites, namely trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs), can predict the prognosis after recanalization therapy. This prospective study recruited patients with AIS receiving IVT, EVT, or both. The National Institutes of Health Stroke Scale (NIHSS) and modified Rankin scale (mRS) scores were used to assess the severity and functional outcomes of AIS, respectively. A functional outcome of mild-to-moderate disability was defined as a mRS score of 0-3 at discharge. Plasma TMAO and SCFA levels were measured through liquid chromatography with triple-quadrupole mass spectrometry. Fifty-six adults undergoing recanalization therapy for AIS were enrolled. Results showed that TMAO levels were not associated with stroke severity and functional outcomes, while isovalerate levels (one of the SCFAs) were negatively correlated with NIHSS scores at admission and discharge. In addition, high isovalerate levels were independently associated with a decreased likelihood of severe disability. The study concluded that an elevated plasma isovalerate level was correlated with mild stroke severity and disability after recanalization therapy for AIS.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Adult , Humans , Ischemic Stroke/etiology , Brain Ischemia/complications , Prognosis , Prospective Studies , Treatment Outcome , Stroke/etiology , Thrombectomy/adverse effects , Fatty Acids, Volatile , Biomarkers
3.
Entropy (Basel) ; 20(12)2018 Dec 14.
Article in English | MEDLINE | ID: mdl-33266691

ABSTRACT

The effects of atomic size difference on the microstructure and mechanical properties of single face-centered cubic (FCC) phase high-entropy alloys are studied. Single FCC phase high-entropy alloys, namely, CoCrFeMnNi, Al0.2CoCrFeMnNi, and Al0.3CoCrCu0.3FeNi, display good workability. The recrystallization and grain growth rates are compared during annealing. Adding Al with 0.2 molar ratio into CoCrFeMnNi retains the single FCC phase. Its atomic size difference increases from 1.18% to 2.77%, and the activation energy of grain growth becomes larger than that of CoCrFeMnNi. The as-homogenized state of Al0.3CoCrCu0.3FeNi high-entropy alloy becomes a single FCC structure. Its atomic size difference is 3.65%, and the grain growth activation energy is the largest among these three kinds of single-phase high-entropy alloys. At ambient temperature, the mechanical properties of Al0.3CoCrCu0.3FeNi are better than those of CoCrFeMnNi because of high lattice distortion and high solid solution hardening.

4.
Sensors (Basel) ; 17(10)2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29065556

ABSTRACT

Over the years, analysis and induction of personality traits has been a topic for individual subjective conjecture or speculation, rather than a focus of inductive scientific analysis. This study proposes a novel framework for analysis and induction of personality traits. First, 14 personality constructs based on the "Big Five" personality factors were developed. Next, a new fingerprint image algorithm was used for classification, and the fingerprints were classified into eight types. The relationship between personality traits and fingerprint type was derived from the results of the questionnaire survey. After comparison of pre-test and post-test results, this study determined the induction ability of personality traits from fingerprint type. Experimental results showed that the left/right thumbprint type of a majority of subjects was left loop/right loop and that the personalities of individuals with this fingerprint type were moderate with no significant differences in the 14 personality constructs.


Subject(s)
Dermatoglyphics/classification , Optical Devices , Optical Imaging/methods , Personality/classification , Algorithms , Humans , Optical Imaging/standards , Surveys and Questionnaires
6.
Electrophoresis ; 30(17): 3071-3078, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19681051

ABSTRACT

The enantiomerization of thioridazine (THD) using sulfated beta-CDs (S-beta-CDs) as chiral selectors in a citrate buffer at pH 3.0 was investigated by dynamic CE. The enantiomers of THD were well separated with dual CD systems consisting of S-beta-CD and a neutral CD. The electropherograms featuring a plateau formation, which indicated the occurrence of the enantiomerization of THD were obtained. The unified equation implemented in the software program DCXplorer was employed to evaluate elution profiles and to determine rate constants of the enantiomerization of THD. Activation parameters were evaluated from temperature-dependent measurements between 15 and 25 degrees C with an increment of 2 degrees C. The enantiomerization barriers of THD in two different electrophoretic systems were determined. Comparative studies on enantioseparation of THD using S-beta-CDs with different degree of substitution and positions of sulfate substituent, such as randomly sulfate-substituted beta-CD, 18-sulfate-substituted beta-CD and heptakis(2,3-dihydroxy-6-O-sulfo)-beta-CD reveal that the interactions between chiral selectors and THD plays an important role in the enantioseparation and enantiomerization of THD.


Subject(s)
Electrophoresis, Capillary/methods , Sulfates/chemistry , Thioridazine/chemistry , beta-Cyclodextrins/chemistry , Algorithms , Linear Models , Stereoisomerism , Temperature , Thermodynamics
8.
J Chromatogr A ; 1188(2): 301-7, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18342869

ABSTRACT

Chiral separations of three hydroxyflavanone aglycones, including 2'-, 3'-, and 4'-hydroxyflavanone, in capillary zone electrophoresis (CZE) using randomly sulfate-substituted beta-cyclodextrin (S-beta-CD) or dual cyclodextrin (CD) systems consisting of S-beta-CD and a neutral CD at low pH were investigated. The results indicate that S-beta-CD is an excellent chiral selector for enantioseparation of 2'-hydroxyflavanone and is a good chiral selector for 3'-hydroxyflavanone. Depending on the concentration of S-beta-CD ranging from 2.0 to 0.75% (w/v), the enantioresolution values were 10.5-19.5 and 1.8-3.4 for 2'- and 3'-hydroxyflavanone, respectively. The enantiomers of 4'-hydroxyflavanone could be effectively separated with S-beta-CD at a concentration of 2.0% (w/v) within 20 min. The enantioselectivity and enantioresolution follow the order 2'-hydroxyflavanone>>3'-hydroxyflavanone>4'-hydroxyflavanone. Alternatively, with the addition of sodium dodecyl sulfate (SDS) monomers at low concentrations in the electrophoretic system, enantioselectivity of these hydroxyflavanone aglycones could be enhanced with dual CD systems. In this case, SDS monomer acted as a complexing agent probably first with S-beta-CD and then subsequently with the analytes for increasing the effective electrophoretic mobility of the analytes towards the anode and as a selectivity controller for affecting the selectivity of hydroxyflavanones. Better enantioseparation between 2'-hydroxyflavanone and 3'-hydroxyflavanone could be achieved with a dual CD system consisting of S-beta-CD and gamma-CD than that with S-beta-CD and beta-CD. In addition, possible chiral recognition mechanisms of hydroxyflavanones are discussed.


Subject(s)
Electrophoresis, Capillary/methods , Flavanones/chemistry , Flavanones/isolation & purification , Sulfates/chemistry , beta-Cyclodextrins/chemistry , Buffers , Hydrogen-Ion Concentration , Molecular Structure , Sodium Dodecyl Sulfate/chemistry , Stereoisomerism
9.
Electrophoresis ; 28(21): 3922-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17922499

ABSTRACT

Enantioseparations of five chiral phenothiazines in CD-modified CZE using the single isomer sulfate-substituted beta-CD (heptakis(2,3-dihydroxy-6-O-sulfo)-beta-CD, SI-S-beta-CD) and dual CD systems consisting of SI-S-beta-CD and a neutral CD as chiral selectors in a citrate buffer at pH 3.0 were investigated. The results indicate that SI-S-beta-CD is an excellent chiral selector for enantioseparation of promethazine. The enantiomers of trimeprazine were well separated, while those of ethopropazine could also be baseline-resolved with SI-S-beta-CD. With dual CD systems, especially with hydroxypropyl-beta-CD (HP-beta-CD) as neutral CD, the enantioselectivity of thioridazine and ethopropazine was considerably enhanced. Effective enantioseparation of phenothiazines, except for methotrimeprazine, could thus be favorably and simultaneously achieved. Moreover, reversal of the enantiomer migration order of ethopropazine and thioridazine occurred by varying the concentration of gamma-CD in the presence of SI-S-beta-CD. These phenomena may be attributable to the opposite effects of sulfated beta-CD and gamma-CD on the mobility of the enantiomers of ethopropazine and of thioridazine. Comparative studies on the enantioseparations of phenothiazines with single CD and dual CD systems containing SI-S-beta-CD and randomly sulfate-substituted beta-CD (MI-S-beta-CD) were made.


Subject(s)
Electrophoresis, Capillary/instrumentation , Electrophoresis, Capillary/methods , Phenothiazines/isolation & purification , beta-Cyclodextrins/chemistry , gamma-Cyclodextrins/chemistry , Electrolytes , Hydrogen-Ion Concentration , Indicators and Reagents , Molecular Structure , Phenothiazines/chemistry , Promethazine/chemistry , Promethazine/isolation & purification , Stereoisomerism , Sulfates/chemistry , Thioridazine/chemistry , Thioridazine/isolation & purification , Trimeprazine/chemistry , Trimeprazine/isolation & purification
10.
Electrophoresis ; 27(17): 3443-51, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16944458

ABSTRACT

Strategies for simultaneous enantioseparations of three catecholamines (DL-norepinephrine, DL-epinephrine, and DL-isoproterenol) and three structurally related compounds (DL-octopamine, DL-synephrine, and DL-norephedrine) by CZE using sulfated beta-CDs as chiral selectors were investigated. Four different separation modes were attempted: (I) using randomly sulfate-substituted beta-CD (MI-S-beta-CD) at relatively low concentrations in a high-concentration phosphate buffer at low pH in the normal polarity mode, (II) using MI-S-beta-CD at high concentrations at low pH in the reversed polarity mode, (III) using MI-S-beta-CD at moderately high concentrations in a phosphate buffer at neutral pH in the normal polarity mode, and (IV) using the single isomer heptakis(2,3-dihydroxy-6-O-sulfo)-beta-CD (SI-S-beta-CD) at low to moderately high concentrations in a high-concentration BGE at low pH in the normal polarity mode. Among them, enantioseparation of these cationic solutes was best achieved under the conditions of mode (II). In mode (II) and mode (III), temperature is an important factor affecting the enantioresolution of norepinephrine. In mode (I) and mode (IV), the use of a high-concentration BGE (150-200 mM) is crucial for effective enantioseparation of these cationic solutes with sulfated beta-CDs. Comparative studies of enantioseparations of these cationic solutes with MI-S-beta-CD and SI-S-beta-CD reveal that the sulfate substituents of MI-S-beta-CD located at the C(2)- position interact strongly with the diol moiety of catecholamines.


Subject(s)
Catecholamines/isolation & purification , Electrophoresis, Capillary/methods , beta-Cyclodextrins/chemistry , Stereoisomerism
11.
Electrophoresis ; 27(21): 4345-50, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17006884

ABSTRACT

Temperature effects on the enantioselectivity of basic analytes in CZE enantioseparation were studied under reversed-polarity mode using randomly sulfate-substituted beta-CDs (MI-S-beta-CD) as chiral seletors. Two catecholamines (epinephrine and isoproterenol) and two structurally related compounds (octopamine and norephedrine) were selected as test compounds in an electrophoretic system at low pH. The mobility differences between the (+)-enantiomers and the (-)-enantiomers of the two catecholamines and dopamine at 40 degrees C are greater than those at 25 degrees C with MI-S-beta-CD, even at a concentration as low as 0.3% w/v. Thus the enantioselectivity of these three basic analytes increases with increasing temperature. This phenomenon results from the inequality of the temperature effect on the mobility of the two enantiomers. In contrast, norephedrine behaves differently. The (+)-enantiomers of these basic analytes were found to migrate faster than the (-)-enantiomers. Consequently, the unusual temperature effect on the enantioselectivity can be observed when the mobility difference of the (+)-enantiomer between 40 and 25 degrees C is greater than that of the (-)-enantiomer using MI-S-beta-CD at a concentration greater than about 0.7% w/v for enantioseparation of isoproterenol, 0.4% w/v for epinephrine, and 0.3% w/v for octopamine. This unusual temperature effect offers the advantages to enhance enantioselectivity, to improve enantioseparation, and to reduce migration times.


Subject(s)
Catecholamines/isolation & purification , Electrophoresis, Capillary/methods , Sulfates/chemistry , Temperature , beta-Cyclodextrins/chemistry , Stereoisomerism
12.
Electrophoresis ; 26(21): 4187-96, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16252333

ABSTRACT

Migration behavior and enantioseparation of racemic hydrobenzoin and structurally related compounds, including benzoin and benzoin methyl ether, in CZE with a dual CD system consisting of heptakis-(2,3-dihydroxy-6-O-sulfo)-beta-CD (SI-S-beta-CD) and beta-CD as chiral selectors in the presence and absence of borate complexation at pH 9.0 were investigated. The results indicate that enantioseparation of hydrobenzoin is mainly governed by CD complexation of hydrobenzoin-borate complexes with SI-S-beta-CD when SI-S-beta-CD concentration is relatively high. Whereas CD complexation of hydrobenzoin-borate complexes with beta-CD plays a significant role in enantioseparation when SI-S-beta-CD concentration is comparatively low. The (S,S)-enantiomer of the hydrobenzoin-borate complex was found to interact more strongly than the corresponding (R,R)-enantiomer with both SI-S-beta-CD and beta-CD. These two types of CD show the same chiral recognition pattern, but they exhibit opposite effects on the mobility of the enantiomers of hydrobenzoin-borate complexes. Enantiomer migration reversal of hydrobenzoin occurred in the presence of borate complexation when varying the concentration of beta-CD, while keeping SI-S-beta-CD at a relatively low concentration. Binding constants of the enantiomers of benzoin-related compounds to beta-CD and those of hydrobenzoin-borate complexes to SI-beta-CD were evaluated; the mobility contributions of all complex species to the effective mobility of the enantiomers of hydrobenzoin as a function of beta-CD concentration in a borate buffer were analyzed. In addition, comparative studies on the enantioseparation of benzoin-related compounds with SI-S-beta-CD and with randomly sulfate-substituted beta-CD were made.


Subject(s)
Benzoin/isolation & purification , Electrophoresis, Capillary/methods , beta-Cyclodextrins , Benzoin/chemistry , Borates , Stereoisomerism
13.
Electrophoresis ; 26(20): 3869-77, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16217834

ABSTRACT

In this study, enantioseparations of five phenothiazines, including promethazine, ethopropazine, trimeprazine, methotrimeprazine, and thioridazine, in CD-modified CZE using dual CD systems consisting of randomly sulfate-substituted CD (MI-S-beta-CD) and a neutral CD as chiral selectors in a citrate buffer (100 mM) at pH 3.0 were investigated. The results indicate that MI-S-beta-CD is an excellent chiral selector for enantioseparation of ethopropazine. The enantiomers of promethazine can also be baseline-resolved with MI-S-beta-CD at concentrations in the range of 0.5-1.0% w/v. On the other hand, thioridazine and trimeprazine interact strongly with neutral CDs. As a result, the enantioselectivity of these two phenothiazines is remarkably and synergistically enhanced with increasing the concentration of neutral CDs in the presence of MI-S-beta-CD and simultaneous enantioseparations of these phenothiazines, except for methotrimeprazine, could favorably be achieved with the use of dual CD systems. Moreover, by varying the concentration of beta-CD or gamma-CD at a fixed concentration of MI-S-beta-CD (0.75% w/v) reversal of the enantiomer migration order of promethazine occurred. This may be attributable to the opposite effects of charged and neutral CDs on the mobility of the enantiomers of promethazine.


Subject(s)
Cyclodextrins , Electrophoresis, Capillary/methods , Phenothiazines/isolation & purification , Stereoisomerism , Sulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...