Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 18(1)2017 Dec 25.
Article in English | MEDLINE | ID: mdl-29295573

ABSTRACT

In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO) nanowire array produced by atomic layer deposition (ALD) while an organic material was a p-type semiconductor, poly(3-hexylthiophene) (P3HT). P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm-3 and 24.7 cm²âˆ™V-1∙s-1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

2.
J Nanosci Nanotechnol ; 16(2): 1834-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27433682

ABSTRACT

In this study, a Pb-Sn alloy nanowire of 80 nm in diameter and 50 microm in length is obtained by an anodic aluminum oxide nanomold and vacuum die casting method. The upper and lower ends of the prepared Pb-Sn alloy nanowire array are vapor deposited with 3 microm of copper thin film, which serves as the conductive layer of the gas sensor. Experimental results show that the sensitivities of 3 gas sensors fabricated by 3 different Sn-Pb alloy nanowire arrays, namely Sn70%-Pb 30% wt, Sn63%-Pb 37% wt and Sn50%-Pb 50% wt, for detecting a carbon monoxide concentration of 500 ppm under a working temperature of 250 degrees C, were 17.83%, 14.89% and 14.12% respectively.

3.
Sensors (Basel) ; 16(4): 431, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27023546

ABSTRACT

In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 µm, 60 µm, and 70 µm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

4.
Materials (Basel) ; 8(12): 8437-8451, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-28793721

ABSTRACT

Atomic force microscopy (AFM) was used for visualization of a nano-oxidation technique performed on diamond-like carbon (DLC) thin film. Experiments of the nano-oxidation technique of the DLC thin film include those on nano-oxidation points and nano-oxidation lines. The feature sizes of the DLC thin film, including surface morphology, depth, and width, were explored after application of a nano-oxidation technique to the DLC thin film under different process parameters. A databank for process parameters and feature sizes of thin films was then established, and multiple regression analysis (MRA) and a back-propagation neural network (BPN) were used to carry out the algorithm. The algorithmic results are compared with the feature sizes acquired from experiments, thus obtaining a prediction model of the nano-oxidation technique of the DLC thin film. The comparative results show that the prediction accuracy of BPN is superior to that of MRA. When the BPN algorithm is used to predict nano-point machining, the mean absolute percentage errors (MAPE) of depth, left side, and right side are 8.02%, 9.68%, and 7.34%, respectively. When nano-line machining is being predicted, the MAPEs of depth, left side, and right side are 4.96%, 8.09%, and 6.77%, respectively. The obtained data can also be used to predict cross-sectional morphology in the DLC thin film treated with a nano-oxidation process.

5.
Nanoscale Res Lett ; 9(1): 63, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24502697

ABSTRACT

In this study, the cyclic voltammetry method was first used to find the reduced voltages and anodic peaks of Bi3+, Sb3+, and Te4+ ions as the judgments for the growth of the (Bi,Sb)2 - x Te3 + x-based materials. Ethylene glycol (C2H6O2) was used as a solvent, and 0.3 M potassium iodide (KI) was used to improve the conductivity of the solution. Two different electrolyte formulas were first used: (a) 0.01 M Bi(NO3)3-5H2O, 0.01 M SbCl3, and 0.01 M TeCl4 and (b) 0.015 M Bi(NO3)3-5H2O, 0.005 M SbCl3, and 0.0075 M TeCl4. The potentiostatic deposition process was first used to find the effect of reduced voltage on the variation of compositions of the (Bi,Sb)2 - xTe3 + x-based materials. After finding the better reduced voltage, 0.01 M Bi(NO3)3-5H2O, 0.01 M SbCl3, and 0.01 M TeCl4 were used as the electrolyte formula. The pulse deposition process was successfully used to control the composition of the (Bi,Sb)2 - xTe3 + x-based materials and grow the nanowires in anodic aluminum oxide (AAO) templates.

6.
J Nanosci Nanotechnol ; 14(10): 8066-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25942924

ABSTRACT

The paper uses technology of lithography process to etch flow fields on single side of a printed circuit board (PCB), and combines flow field plate with collector plate to make innovative anode flow field plates and cathode flow field plates required in direct methanol fuel cell (DMFC), and meanwhile makes membrane electrode assembly (MEA) and methanol fuel plate. The flow field plates are designed to be in the form of serpentine flow field. The paper measured the assembled DMFC to achieve the overall efficiency of DMFC under the conditions of different screw torques and different concentration, flow rate and temperature of methanol. Experimental results show that when the flow field width of flow field plate is 1 mm, the screw torque is 16 kgf/cm, and the concentration, flow rate and temperature of methanol-water are 1 M, 180 ml/h and 50 degrees C respectively, the prepared DMFC can have better power density of 5.5 mW/cm2, 5.4 mW/cm2, 11.2 mW/cm2 and 11.8 mW/cm2. Besides, the volume of the DMFC designed and assembled by the study is smaller than the generally existing DMFC by 40%.

7.
J Nanosci Nanotechnol ; 12(4): 3515-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22849158

ABSTRACT

This study uses TiO2 nanoparticles and highly ordered anatase TiO2 nanotubes (AOTnt) as thin film photoanodes for dye-sensitized solar cells (DSSCs). DSSCs are assembled by single-layer and double-layer films of photoanodes and their electron transfer performance is compared. TiO2 nanoparticles were fabricated by the sol-gel method, and AOTnts were grown on titanium foil. This study uses TiO2 nanoparticles or AOTnts to prepare single-layer photoanodes and TiO2 nanoparticles coated on an AOTnt film to fabricate double-layer photoanodes. These three different photoanodes are soaked in dye and assembled into DSSCs, and their open-loop voltage recession, electrochemical impedance, lifetime, life cycle, and effective diffusion coefficient are measured. Electron transfer efficiency of the photoanodes and light harvesting efficiency are further analyzed. The results show that the electron transfer efficiency, open-loop voltage recession, lifetime, life cycle, and effective diffusion coefficient of the DSSCs assembled using double-layer photoanodes (AOTnt-TiO2) are superior to those of single-layer photoanodes (TiO2 or AOTnt).

8.
J Nanosci Nanotechnol ; 11(8): 7459-62, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22103219

ABSTRACT

This study deals with the fabrication of three different morphologies of TiO2 nanoparticles to fabricate two-layer photoelectrode thin film for dye-sensitized solar cells (DSSC). The four different TiO2 morphologies are titania nanotubes (Tnt), TiO2 nanoparticles (H220), TiO2 nanoparticle (SP) and commercial DP-25 nanoparticles (P-25). To prepare the thin films of the photoelectrodes, the first layer is coated by H220 TiO2 nanoparticles, and the second is coated by 3 kinds of materials optimally proportionally mixed - P25, SP and Tnt. The photoelectric conversion efficiency of DSSCs with photoelectrodes fabricated using H220 reached 6.31%. Finally, the TiO2 nanaomaterials with four different morphologies were used to prepare a two layer photoelectrode with the structure of H220/P25-Tnt-SP which was combined with a Pt counter electrode to assemble DSSCs. These DSSCs had photoelectric conversion efficiencies of as high as 7.47%.

9.
J Nanosci Nanotechnol ; 11(8): 7491-4, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22103227

ABSTRACT

This study applies the thermoelectric grains of Sb2Te3 on conductive glass to evaporate Sb2Te3 thin films by the electron beam evaporation method. Through experimental tests with different evaporation process parameters and film annealing conditions, thin films with better Seebeck coefficient, resistivity (p) and power fact (PF) can be obtained. Experimental results show that when thin films are annealed, their defects can be decreased accordingly, and carrier mobility can be enhanced to further elevate the conductivity of thin films. When the substrate temperature is set at 200 degrees C to fabricate Sb2Te3 thin films by the evaporation process and by annealing at 220 degrees C for 60 minutes, the Seebeck coefficient of Sb2Te3 thin films increase from 87.6 microV/K to 177.7 microV/K; resistivity falls from 6.21 m ohms-cm to 2.53 m ohms-cm and PF can achieve the maximum value of 1.24 10(-3) W/K2 m. Finally, this study attempts to add indium (In) to Sb2Te3 thin films. Indium has been successfully fabricated In3SbTe, thin films. This study also analyzes the effects of In on the thermoelectric properties of In3SbTe2 thin films.

10.
J Nanosci Nanotechnol ; 11(2): 1754-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21456284

ABSTRACT

Using the polymer blending method, conductive materials and waterborne polyurethane (WPU) were mixed to fabricate conductive composite films for application in electromagnetic shielding. First, nitric acid was used to purify the multi-walled carbon nanotubes (MWCNT). Second, sodium dodecyl sulfate (SDS) was utilized to disperse the carbon nanotubes, and then they were mixed with 8 microm diameter and 2 mm long stainless steel fibers (SSF) in the WPU by the polymer blending method. Finally, the thickness of 0.25 mm of conductive composite film was fabricated by means of coating. According to the ASTM D4935-99 standard, a coaxial transmission line was used to measure the electromagnetic shielding effectiveness (EMSE) of conductive composite film within the range of 50 MHz approximately 3.0 GHz. Moreover, the influence of the prior and posterior dispersion of carbon nanotubes dispersed on electromagnetic shielding was dealt with in the paper. Results demonstrated that the conductive composite film, within 50 MHz approximately 3.0 GHz, fabricated by the 15 wt% of the multi-walled carbon nanotubes and 30 wt% of the stainless steel fibers can achieve the maximum of the electromagnetic shielding effectiveness, 34.86 dB, and its shielding effect, 99.9%.

SELECTION OF CITATIONS
SEARCH DETAIL
...