Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2405763, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809945

ABSTRACT

Demetalation caused by the electrochemical dissolution of metallic Fe atoms is a major challenge for the practical application of Fe─N─C catalysts. Herein, an efficient single metallic Mn active site is constructed to improve the strength of the Fe─N bond, inhibiting the demetalation effect of Fe─N─C. Mn acts as an electron donor inducing more delocalized electrons to reduce the oxidation state of Fe by increasing the electron density, thereby enhancing the Fe─N bond and inhibiting the electrochemical dissolution of Fe. The oxygen reduction reaction pathway for the dissociation of Fe─Mn dual sites can overcome the high energy barriers to direct O─O bond dissociation and modulate the electronic states of Fe─N4 sites. The resulting FeMn─N─C exhibits excellent ORR activity with a high half-wave potential of 0.92 V in alkaline electrolytes. FeMn─N─C as a cathode catalyst for Zn-air batteries has a cycle stability of 700 h at 25 °C and a long cycle stability of more than 210 h under extremely cold conditions at -40 °C. These findings contribute to the development of efficient and stable metal-nitrogen-carbon catalysts for various energy devices.

2.
Nat Commun ; 15(1): 2728, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553434

ABSTRACT

Establishing appropriate metal-support interactions is imperative for acquiring efficient and corrosion-resistant catalysts for water splitting. Herein, the interaction mechanism between Ru nanoparticles and a series of titanium oxides, including TiO, Ti4O7 and TiO2, designed via facile non-stoichiometric engineering is systematically studied. Ti4O7, with the unique band structure, high conductivity and chemical stability, endows with ingenious metal-support interaction through interfacial Ti-O-Ru units, which stabilizes Ru species during OER and triggers hydrogen spillover to accelerate HER kinetics. As expected, Ru/Ti4O7 displays ultralow overpotentials of 8 mV and 150 mV for HER and OER with a long operation of 500 h at 10 mA cm-2 in acidic media, which is expanded in pH-universal environments. Benefitting from the excellent bifunctional performance, the proton exchange membrane and anion exchange membrane electrolyzer assembled with Ru/Ti4O7 achieves superior performance and robust operation. The work paves the way for efficient energy conversion devices.

3.
Angew Chem Int Ed Engl ; 63(18): e202402018, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38390636

ABSTRACT

Developing ruthenium-based heterogeneous catalysts with an efficient and stable interface is essential for enhanced acidic oxygen evolution reaction (OER). Herein, we report a defect-rich ultrathin boron nitride nanosheet support with relatively independent electron donor and acceptor sites, which serves as an electron reservoir and receiving station for RuO2, realizing the rapid supply and reception of electrons. Through precisely controlling the reaction interface, a low OER overpotential of only 180 mV (at 10 mA cm-2) and long-term operational stability (350 h) are achieved, suggesting potential practical applications. In situ characterization and theoretical calculations have validated the existence of a localized electronic recycling between RuO2 and ultrathin BN nanosheets (BNNS). The electron-rich Ru sites accelerate the adsorption of water molecules and the dissociation of intermediates, while the interconnection between the O-terminal and B-terminal edge establishes electronic back-donation, effectively suppressing the over-oxidation of lattice oxygen. This study provides a new perspective for constructing a stable and highly active catalytic interface.

4.
Adv Mater ; 36(7): e2308925, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37879753

ABSTRACT

Neutral oxygen evolution reaction (OER) with unique reactive environments exhibits extremely slow reaction kinetics, posing significant challenges in the design of catalysts. Herein, a built-in electric field between the tungstate (Ni-FeWO4 ) with adjustable work function and Lewis acid WO3 is elaborately constructed to regulate asymmetric interfacial electron distribution, which promotes electron accumulation of Fe sites in the tungstate. This decelerates the rapid dissolution of Fe under the OER potentials, thereby retaining the active hydroxyl oxide with the optimized OER reaction pathway. Meanwhile, Lewis acid WO3 enhances hydroxyl adsorption near the electrode surface to improve mass transfer. As expected, the optimized Ni-FeWO4 @WO3 /NF self-supporting electrode achieves a low overpotential of 235 mV at 10 mA cm-2 in neutral media and maintains stable operation for 200 h. Furthermore, the membrane electrode assembly constructed by such self-supporting electrode exhibits robust stability for 250 h during neutral seawater electrolysis. This work deepens the understanding of the reconstruction of OER catalysts in neutral environments and paves the way for development of the energy conversion technologies.

5.
J Am Chem Soc ; 145(43): 23659-23669, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37871168

ABSTRACT

Designing stable single-atom electrocatalysts with lower energy barriers is urgent for the acidic oxygen evolution reaction. In particular, the atomic catalysts are highly dependent on the kinetically sluggish acid-base mechanism, limiting the reaction paths of intermediates. Herein, we successfully manipulate the steric localization of Ru single atoms at the Co3O4 surface to improve acidic oxygen evolution by precise control of the anchor sites. The delicate structure design can switch the reaction mechanism from the lattice oxygen mechanism (LOM) to the optimized adsorbate evolution mechanism (AEM). In particular, Ru atoms embedded into cation vacancies reveal an optimized mechanism that activates the proton donor-acceptor function (PDAM), demonstrating a new single-atom catalytic pathway to circumvent the classic scaling relationship. Steric interactions with intermediates at the anchored Ru-O-Co interface played a primary role in optimizing the intermediates' conformation and reducing the energy barrier. As a comparison, Ru atoms confined to the surface sites exhibit a lattice oxygen mechanism for the oxygen evolution process. As a result, the delicate atom control of the spatial position presents a 100-fold increase in mass activity from 36.96 A gRu(ads)-1 to 4012.11 A gRu(anc)-1 at 1.50 V. These findings offer new insights into the precise control of single-atom catalytic behavior.

6.
Adv Mater ; 35(48): e2305939, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37671910

ABSTRACT

The continuous oxidation and leachability of active sites in Ru-based catalysts hinder practical application in proton-exchange membrane water electrolyzers (PEMWE). Herein, robust inter-doped tungsten-ruthenium oxide heterostructures [(Ru-W)Ox ] fabricated by sequential rapid oxidation and metal thermomigration processes are proposed to enhance the activity and stability of acidic oxygen evolution reaction (OER). The introduction of high-valent W species induces the valence oscillation of the Ru sites during OER, facilitating the cyclic transition of the active metal oxidation states and maintaining the continuous operation of the active sites. The preferential oxidation of W species and electronic gain of Ru sites in the inter-doped heterostructure significantly stabilize RuOx on WOx substrates beyond the Pourbaix stability limit of bare RuO2 . Furthermore, the asymmetric Ru-O-W active units are generated around the heterostructure interface to adsorb the oxygen intermediates synergistically, enhancing the intrinsic OER activity. Consequently, the inter-doped (Ru-W)Ox heterostructures not only demonstrate an overpotential of 170 mV at 10 mA cm-2 and excellent stability of 300 h in acidic electrolytes but also exhibit the potential for practical applications, as evidenced by the stable operation at 0.5 A cm-2 for 300 h in PEMWE.

7.
Angew Chem Int Ed Engl ; 62(42): e202311937, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37658707

ABSTRACT

Designing novel single-atom catalysts (SACs) supports to modulate the electronic structure is crucial to optimize the catalytic activity, but rather challenging. Herein, a general strategy is proposed to utilize the metalloid properties of supports to trap and stabilize single-atoms with low-valence states. A series of single-atoms supported on the surface of tungsten carbide (M-WCx , M=Ru, Ir, Pd) are rationally developed through a facile pyrolysis method. Benefiting from the metalloid properties of WCx , the single-atoms exhibit weak coordination with surface W and C atoms, resulting in the formation of low-valence active centers similar to metals. The unique metal-metal interaction effectively stabilizes the low-valence single atoms on the WCx surface and improves the electronic orbital energy level distribution of the active sites. As expected, the representative Ru-WCx exhibits superior mass activities of 7.84 and 62.52 A mgRu -1 for the hydrogen oxidation and evolution reactions (HOR/HER), respectively. In-depth mechanistic analysis demonstrates that an ideal dual-sites cooperative mechanism achieves a suitable adsorption balance of Had and OHad , resulting in an energetically favorable Volmer step. This work offers new guidance for the precise construction of highly active SACs.

8.
Adv Mater ; 35(36): e2303109, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37247611

ABSTRACT

High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature-tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy-rich porous perovskite oxide (CaMnO3 ) nanofibers coated with reduced graphene oxide coating (V-CMO/rGO) are developed as the air electrode catalyst for low-temperature and knittable Zn-air batteries. V-CMO/rGO exhibits top-level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V-CMO/rGO drives knittable and flexible Zn-air batteries under a low temperature of -40 °C with high peak power density of 56 mW cm-2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment.

9.
ACS Nano ; 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622287

ABSTRACT

The scalable production of inexpensive, efficient, and robust catalysts for oxygen evolution reaction (OER) that can deliver high current densities at low potentials is critical for the industrial implementation of water splitting technology. Herein, a series of metal oxides coupled with Fe2O3 are in situ grown on iron foam massively via an ultrafast combustion approach for a few seconds. Benefiting from the three-dimensional nanosheet array framework and the heterojunction structure, the self-supporting electrodes with abundant active centers can regulate mass transport and electronic structure for prompting OER activity at high current density. The optimized Ni(OH)2/Fe2O3 with robust structure can deliver a high current density of 1000 mA cm-2 at the overpotential as low as 271 mV in 1.0 M KOH for up to 1500 h. Theoretical calculation demonstrates that the strong electronic modulation plays a crucial part in the hybrid by optimizing the adsorption energy of the intermediate, thereby enhancing the efficiency of oxygen evolution. This work proposes a method to construct cheap and robust catalysts for practical application in energy conversion and storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...