Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
NMR Biomed ; : e5169, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712667

ABSTRACT

In this study, our objective was to assess the performance of two deep learning-based hippocampal segmentation methods, SynthSeg and TigerBx, which are readily available to the public. We contrasted their performance with that of two established techniques, FreeSurfer-Aseg and FSL-FIRST, using three-dimensional T1-weighted MRI scans (n = 1447) procured from public databases. Our evaluation focused on the accuracy and reproducibility of these tools in estimating hippocampal volume. The findings suggest that both SynthSeg and TigerBx are on a par with Aseg and FIRST in terms of segmentation accuracy and reproducibility, but offer a significant advantage in processing speed, generating results in less than 1 min compared with several minutes to hours for the latter tools. In terms of Alzheimer's disease classification based on the hippocampal atrophy rate, SynthSeg and TigerBx exhibited superior performance. In conclusion, we evaluated the capabilities of two deep learning-based segmentation techniques. The results underscore their potential value in clinical and research environments, particularly when investigating neurological conditions associated with hippocampal structures.

2.
Proc Natl Acad Sci U S A ; 121(8): e2313042121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38346194

ABSTRACT

One of the very fundamental attributes for telencephalic neural computation in mammals involves network activities oscillating beyond the initial trigger. The continuing and automated processing of transient inputs shall constitute the basis of cognition and intelligence but may lead to neuropsychiatric disorders such as epileptic seizures if carried so far as to engross part of or the whole telencephalic system. From a conventional view of the basic design of the telencephalic local circuitry, the GABAergic interneurons (INs) and glutamatergic pyramidal neurons (PNs) make negative feedback loops which would regulate the neural activities back to the original state. The drive for the most intriguing self-perpetuating telencephalic activities, then, has not been posed and characterized. We found activity-dependent deployment and delineated functional consequences of the electrical synapses directly linking INs and PNs in the amygdala, a prototypical telencephalic circuitry. These electrical synapses endow INs dual (a faster excitatory and a slower inhibitory) actions on PNs, providing a network-intrinsic excitatory drive that fuels the IN-PN interconnected circuitries and enables persistent oscillations with preservation of GABAergic negative feedback. Moreover, the entities of electrical synapses between INs and PNs are engaged in and disengaged from functioning in a highly dynamic way according to neural activities, which then determine the spatiotemporal scale of recruited oscillating networks. This study uncovers a special wide-range and context-dependent plasticity for wiring/rewiring of brain networks. Epileptogenesis or a wide spectrum of clinical disorders may ensue, however, from different scales of pathological extension of this unique form of telencephalic plasticity.


Subject(s)
Electrical Synapses , Epilepsy , Animals , Humans , Synapses/physiology , Interneurons/physiology , Brain , Epilepsy/pathology , Seizures/pathology , Mammals
3.
Neuropharmacology ; 247: 109835, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38228283

ABSTRACT

Na+ channels are essential for the genesis of action potentials in most neurons. After opening by membrane depolarization, Na+ channels enter a series of inactivated states (e.g. the fast, intermediate, and slow inactivated states; or If, Ii, and Is). The inactivated Na+ channel may recover via the open state upon membrane repolarization, giving rise to "resurgent" Na+ currents which could be critical for densely repetitive or burst discharges. We incubated CHO-K1 cells transfected with human NaV1.7 cDNA and measured resurgent currents with whole-cell patch recordings. We found Ii is the major inactivated state responsible for the genesis of resurgent currents. Rufinamide, in therapeutic concentrations, could selectively bind to Ii to slow the recovery process and dose-dependently inhibit resurgent currents. The other Na+ channel-inhibiting antiseizure medications (ASM), such as phenytoin and lacosamide (selectively binds to If and Is, separately), fail to show a similar inhibitory effect in clinically relevant concentrations. Resurgent currents are decreased with lengthening of the prepulse, presumably because of redistribution of the channel from Ii to If. Rufinamide could accentuate the decrease to mimic a use-dependent inhibitory effect. The molecular action of slowing of recovery from inactivation by binding to Ii also explains the highly correlative inhibitory effect of rufinamide on both transient and resurgent Na+ currents. The modest but correlative inhibition of both currents may make a novel synergistic effect and thus strong-enough suppression of pathological repetitive and especially burst discharges. Rufinamide may thus have a unique spectrum of therapeutic applications for disorders with excessive neural excitabilities.


Subject(s)
Neurons , Triazoles , Animals , Cricetinae , Humans , Action Potentials , CHO Cells
4.
NPJ Parkinsons Dis ; 8(1): 77, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35725730

ABSTRACT

The success of deep brain stimulation (DBS) therapy indicates that Parkinson's disease is a brain rhythm disorder. However, the manifestations of the erroneous rhythms corrected by DBS remain to be established. We found that augmentation of α rhythms and α coherence between the motor cortex (MC) and the subthalamic nucleus (STN) is characteristically prokinetic and is decreased in parkinsonian rats. In multi-unit recordings, movement is normally associated with increased changes in spatiotemporal activities rather than overall spike rates in MC. In parkinsonian rats, MC shows higher spike rates at rest but less spatiotemporal activity changes upon movement, and STN burst discharges are more prevalent, longer lasting, and less responsive to MC inputs. DBS at STN rectifies the foregoing pathological MC-STN oscillations and consequently locomotor deficits, yet overstimulation may cause behavioral restlessness. These results indicate that delicate electrophysiological considerations at both cortical and subcortical levels should be exercised for optimal DBS therapy.

5.
Exp Neurol ; 356: 114153, 2022 10.
Article in English | MEDLINE | ID: mdl-35752209

ABSTRACT

The cardinal electrophysiological signs in Parkinson's disease (PD) include augmented beta oscillations in the motor cortex-subthalamic nucleus (MC-STN) axis and excessive burst discharges in STN. We have shown that excessive STN burst discharges have a direct causal relation with the locomotor deficits in PD. To investigate the correlation between the two cardinal signs, we characterized the courses of development of the electrophysiological abnormalities in the hemiparkinsonian rat model. The loss of dopaminergic neurons develops fast, and is histologically completed within 4-7 days of the lesion. The increase in STN burst discharges is limited to the lesioned side, and follows a very similar course. In contrast, beta augmentation has a bilateral presentation, and requires 14-21 days for full development. Behaviorally, the gross locomotor deficits in open field test and limb akinesia in stepping test match the foregoing fast and slow time courses, respectively. A further look into the spike entrainment shows that the oscillations in local field potential (LFP) of the MC effectively entrain the multi-unit (MU) spikes of MC, STN and entopeduncular nucleus (EPN), a rat homolog of human globus pallidus interna (GPi), whereas the LFP of STN or EPN (GPi) cannot entrain the spikes in MC. We conclude that excessive STN burst discharges are a direct consequence, whereas beta augmentation is probably a secondary or adaptive changes in the cortico-subcortical re-entrant loops, to dopaminergic deprivation. Beta augmentation is therefore not so consistently present as excessive STN burst discharges, but could signal more delicate derangements at the level of cortical programming in PD.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Animals , Dopamine/pharmacology , Globus Pallidus , Humans , Parkinson Disease/pathology , Patient Discharge , Rats , Subthalamic Nucleus/physiology
6.
Biochem Pharmacol ; 197: 114928, 2022 03.
Article in English | MEDLINE | ID: mdl-35063442

ABSTRACT

Na+ channels undergo multiple inactivated states with different kinetics, which set the refractory period of neuronal discharges, but isolating the intermediate inactivated state has been challenging. Most classical Na+channel-inhibiting anticonvulsants bind to the fast inactivated state to reduce Na+currents and cellular excitability. These anticonvulsants have the slow binding kinetics and thus necessitate long depolarization for drug action, a "use-dependent" effect sparing most normal activities. Rufinamide is a new anticonvulsant targeting Na+channels, and has a therapeutic effect on Lennox-Gastaut syndrome (LGS) which is refractory to classicalNa+channel inhibitors. The efficacy on LGS, whose epileptiform discharges largely involve short depolarization or bursts, is primarily due to the very fast binding kinetics of rufinamide. Could the very fast kinetics of rufinamide lead to indiscriminate inhibition of neuronal activities ? Onhippocampal neurons from male and female mice, wefound that rufinamide most effectively shifts the Na+channel inactivation curve if the inactivating pulse is 1 s, rather than 0.1 or 18 s, in duration. Rufinamide also shows a maximal slowing effect on the recovery kinetics from the inactivation driven by modest depolarization (e.g. -60 mV) of intermediate length (e.g. 50-300 ms). Consistently, rufinamide selectively inhibits the burst discharges at 50-300 ms on a plateau of ∼-60 mV. This is mechanistically ascribable to selective binding of rufinamide to an intermediate inactivated state withan apparent dissociation constantof ∼40 µM. Being the first molecule embodying the evasive transitional gating state, rufinamide could have a unique anti-seizure profile with a novel form of use-dependent action.


Subject(s)
Anticonvulsants/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Triazoles/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/physiology , Animals , Dose-Response Relationship, Drug , Female , Male , Mice , Mice, Inbred C57BL , Organ Culture Techniques , Protein Stability/drug effects , Voltage-Gated Sodium Channels/chemistry
7.
J Biomed Sci ; 28(1): 85, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34886870

ABSTRACT

Parkinson's disease (PD), or paralysis agitans, is a common neurodegenerative disease characterized by dopaminergic deprivation in the basal ganglia because of neuronal loss in the substantia nigra pars compacta. Clinically, PD apparently involves both hypokinetic (e.g. akinetic rigidity) and hyperkinetic (e.g. tremor/propulsion) symptoms. The symptomatic pathogenesis, however, has remained elusive. The recent success of deep brain stimulation (DBS) therapy applied to the subthalamic nucleus (STN) or the globus pallidus pars internus indicates that there are essential electrophysiological abnormalities in PD. Consistently, dopamine-deprived STN shows excessive burst discharges. This proves to be a central pathophysiological element causally linked to the locomotor deficits in PD, as maneuvers (such as DBS of different polarities) decreasing and increasing STN burst discharges would decrease and increase the locomotor deficits, respectively. STN bursts are not so autonomous but show a "relay" feature, requiring glutamatergic synaptic inputs from the motor cortex (MC) to develop. In PD, there is an increase in overall MC activities and the corticosubthalamic input is enhanced and contributory to excessive burst discharges in STN. The increase in MC activities may be relevant to the enhanced beta power in local field potentials (LFP) as well as the deranged motor programming at the cortical level in PD. Moreover, MC could not only drive erroneous STN bursts, but also be driven by STN discharges at specific LFP frequencies (~ 4 to 6 Hz) to produce coherent tremulous muscle contractions. In essence, PD may be viewed as a disorder with deranged rhythms in the cortico-subcortical re-entrant loops, manifestly including STN, the major component of the oscillating core, and MC, the origin of the final common descending motor pathways. The configurations of the deranged rhythms may play a determinant role in the symptomatic pathogenesis of PD, and provide insight into the mechanism underlying normal motor control. Therapeutic brain stimulation for PD and relevant disorders should be adaptively exercised with in-depth pathophysiological considerations for each individual patient, and aim at a final normalization of cortical discharge patterns for the best ameliorating effect on the locomotor and even non-motor symptoms.


Subject(s)
Motor Cortex/physiopathology , Neurons/physiology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Subthalamic Nucleus/physiopathology , Electrophysiological Phenomena , Humans
8.
Front Syst Neurosci ; 15: 607450, 2021.
Article in English | MEDLINE | ID: mdl-34408632

ABSTRACT

Since deep brain stimulation (DBS) at the epileptogenic focus (in situ) denotes long-term repetitive stimulation of the potentially epileptogenic structures, such as the amygdala, the hippocampus, and the cerebral cortex, a kindling effect and aggravation of seizures may happen and complicate the clinical condition. It is, thus, highly desirable to work out a protocol with an evident quenching (anticonvulsant) effect but free of concomitant proconvulsant side effects. We found that in the basolateral amygdala (BLA), an extremely wide range of pulsatile stimulation protocols eventually leads to the kindling effect. Only protocols with a pulse frequency of ≤1 Hz or a direct current (DC), with all of the other parameters unchanged, could never kindle the animal. On the other hand, the aforementioned DC stimulation (DCS), even a pulse as short as 10 s given 5 min before the kindling stimuli or a pulse given even to the contralateral BLA, is very effective against epileptogenicity and ictogenicity. Behavioral, electrophysiological, and histological findings consistently demonstrate success in seizure quenching or suppression as well as in the safety of the specific DBS protocol (e.g., no apparent brain damage by repeated sessions of stimulation applied to the BLA for 1 month). We conclude that in situ DCS, with a novel and rational design of the stimulation protocol composed of a very low (∼3% or 10 s/5 min) duty cycle and assuredly devoid of the potential of kindling, may make a successful antiepileptic therapy with adequate safety in terms of little epileptogenic adverse events and tissue damage.

9.
Ann Neurol ; 89(6): 1099-1113, 2021 06.
Article in English | MEDLINE | ID: mdl-33745195

ABSTRACT

OBJECTIVE: Lennox-Gastaut syndrome (LGS) is an epileptic encephalopathy frequently associated with multiple types of seizures. The classical Na+ channel inhibitors are in general ineffective against the seizures in LGS. Rufinamide is a new Na+ channel inhibitor, but approved for the treatment of LGS. This is not consistent with a choice of antiseizure drugs (ASDs) according to simplistic categorical grouping. METHODS: The effect of rufinamide on the Na+ channel, cellular discharges, and seizure behaviors was quantitatively characterized in native neurons and mammalian models of epilepsy, and compared with the other Na+ channel inhibitors. RESULTS: With a much faster binding rate to the inactivated Na+ channel than phenytoin, rufinamide is distinctively effective if the seizure discharges chiefly involve short bursts interspersed with hyperpolarized interburst intervals, exemplified by spike and wave discharges (SWDs) on electroencephalograms. Consistently, rufinamide, but not phenytoin, suppresses SWD-associated seizures in pentylenetetrazol or AY-9944 models, which recapitulate the major electrophysiological and behavioral manifestations in typical and atypical absence seizures, including LGS. INTERPRETATION: Na+ channel inhibitors shall have sufficiently fast binding to exert an action during the short bursts and then suppress SWDs, in which cases rufinamide is superior. For the epileptiform discharges where the interburst intervals are not so hyperpolarized, phenytoin could be better because of the higher affinity. Na+ channel inhibitors with different binding kinetics and affinity to the inactivated channels may have different antiseizure scope. A rational choice of ASDs according to in-depth molecular pharmacology and the attributes of ictal discharges is advisable. ANN NEUROL 2021;89:1099-1113.


Subject(s)
Lennox Gastaut Syndrome , Neurons/drug effects , Triazoles/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Seizures
10.
Neurobiol Dis ; 148: 105188, 2021 01.
Article in English | MEDLINE | ID: mdl-33221531

ABSTRACT

Epileptic seizures are automatic, excessive, and synchronized neuronal activities originating from many brain regions especially the amygdala, the allocortices and neocortices. This may reflect a shared principle for network organization and signaling in these telencephalic structures. In theory, the automaticity of epileptic discharges may stem from spontaneously active "oscillator" neurons equipped with intrinsic pacemaking conductances, or from a group of synaptically-connected collaborating "resonator" neurons. In the basolateral amygdalar (BLA) network of pyramidal-inhibitory (PN-IN) neuronal resonators, we demonstrated that rhythmogenic currents are provided by glutamatergic rather than the classic intrinsic or cellular pacemaking conductances (namely the h currents). The excitatory output of glutamatergic neurons such as PNs presumably propels a novel network-based "relay burst mode" of discharges especially in INs, which precondition PNs into a state prone to burst discharges and thus further glutamate release. Also, selective activation of unilateral PNs, but never INs, readily drives bilateral BLA networks into reverberating discharges which are fully synchronized with the behavioral manifestations of seizures (e.g. muscle contractions). Seizures originating in BLA and/or the other structures with similar PN-IN networks thus could be viewed as glutamate-triggered erroneous network oscillations that are normally responsible for information relay.


Subject(s)
Basolateral Nuclear Complex/metabolism , Excitatory Postsynaptic Potentials/physiology , Glutamic Acid/metabolism , Inhibitory Postsynaptic Potentials/physiology , Pyramidal Cells/metabolism , Seizures/metabolism , Amygdala/metabolism , Animals , Brain Waves/physiology , Kindling, Neurologic , Mice , Seizures/physiopathology , Synaptic Transmission/physiology
11.
iScience ; 23(11): 101666, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33134896

ABSTRACT

Epileptic seizures constitute a common neurological disease primarily diagnosed by characteristic rhythms or waves in the local field potentials (LFPs) of cerebral cortices or electroencephalograms. With a basolateral amygdala (BLA) kindling model, we found that the dominant frequency of BLA oscillations is in the delta range (1-5 Hz) in both normal and seizure conditions. Multi-unit discharges are increased with higher seizure staging but remain phase-locked to the delta waves in LFPs. Also, the change in synchrony precedes and outlasts the changes in discharging units as well as behavioral seizures. One short train of stimuli readily drives the pyramidal-inhibitory neuronal networks in BLA slices into prolonged reverberating activities, where the burst and interburst intervals may concurrently set a "natural wavelength" for delta frequencies. Seizures thus could be viewed as erroneous temporospatial continuums to normal oscillations in a system with a built-in synchronizing and resonating nature for information relay.

12.
Neuropharmacology ; 179: 108266, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32853658

ABSTRACT

Lacosamide is a new-generation anticonvulsant acting on Na+ channels. Compared to the classic anticonvulsants targeting Na+ channels, lacosamide is unique in structure and in its molecular action requiring longer membrane depolarization. Selective binding to the slow inactivated state of Na+ channels was then advocated for lacosamide, although slow binding to the fast inactivated state was alternatively proposed recently. In addition, quantitative characterization of lacosamide action has been deficient. We investigated the interactions between lacosamide and Na+ channels in native mammalian neurons, and found that the apparent dissociation constant (~13.7 µM) of lacosamide to the slow inactivated state is well within the therapeutic concentration range and is much (>15-fold) lower than the dissociation constant of lacosamide to the fast inactivated state. Besides, lacosamide has extremely slow binding rates (<400 M-1sec-1) to the fast but much faster binding rates (>3000 M-1sec-1) to the slow inactivated Na+ channels. Consistent with these biophysical characters, we further demonstrated that lacosamide is much more effective against the repetitive burst discharges with interburst intervals at -60 mV than -80 mV. With preponderant binding to the slow inactivation state in therapeutic concentrations and thus less propensity to affect normal discharges, lacosamide could be a drug of choice for seizure discharges characterized by relatively depolarized interburst intervals, during which more slow inactivated states could be generated and more binding of lacosamide would ensue.


Subject(s)
Lacosamide/metabolism , Lacosamide/pharmacology , Neurons/drug effects , Neurons/metabolism , Sodium Channels/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Binding Sites/drug effects , Binding Sites/physiology , Dose-Response Relationship, Drug , Female , Hippocampus/drug effects , Hippocampus/metabolism , Kinetics , Lacosamide/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
13.
Sci Rep ; 10(1): 9840, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32528132

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Sci Rep ; 10(1): 8278, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427942

ABSTRACT

Modulation of subthalamic nucleus (STN) firing patterns with injections of depolarizing currents into the STN is an important advance for the treatment of hypokinetic movement disorders, especially Parkinson's disease (PD). Chorea, ballism and dystonia are prototypical examples of hyperkinetic movement disorders. In our previous study, normal rats without nigro-striatal lesion were rendered hypokinetic with hyperpolarizing currents injected into the STN. Therefore, modulation of the firing pattern by injection of a hyperpolarizing current into the STN could be an effective treatment for hyperkinetic movement disorders. We investigated the effect of injecting a hyperpolarizing current into the STNs of two different types of hyperkinetic animal models and a patient with an otherwise uncontrollable hyperkinetic disorder. The two animal models included levodopa-induced hyperkinetic movement in parkinsonian rats (L-DOPA-induced dyskinesia model) and hyperkinesia induced by an intrastriatal injection of 3-nitropropionic acid (Huntington disease model), covering neurodegeneration-related as well as neurotoxin-induced derangement in the cortico-subcortical re-entrant loops. Delivering hyperpolarizing currents into the STN readily alleviated the hyperkinetic behaviors in the two animal models and in the clinical case, with an evident increase in subthalamic burst discharges in electrophysiological recordings. Application of a hyperpolarizing current into the STN via a Deep brain stimulation (DBS) electrode could be an effective general therapy for a wide spectrum of hyperkinetic movement disorders.


Subject(s)
Deep Brain Stimulation/methods , Hyperkinesis/therapy , Levodopa/adverse effects , Nitro Compounds/adverse effects , Propionates/adverse effects , Subthalamic Nucleus/physiology , Animals , Cell Polarity , Disease Models, Animal , Humans , Hyperkinesis/chemically induced , Male , Rats , Treatment Outcome
15.
J Neurochem ; 153(5): 549-566, 2020 06.
Article in English | MEDLINE | ID: mdl-31821563

ABSTRACT

N-methyl-D-aspartate (NMDA) receptor channels are activated by glutamate (or NMDA) and glycine. The channels also undergo desensitization, which denotes decreased channel availability, after prolonged exposure to the activating ligands. Glycine apparently has a paradoxical negative effect on desensitization, as the increase in ambient glycine in concentrations required for channel activation would increase sustained NMDA receptor currents. We hypothesized that this classical "glycine-dependent desensitization" could be glycine-dependent activation in essence. By performing electrophysiological recordings and biophysical analyses with rat brain NMDA receptors heterogeneously expressed in Xenopus laevis oocytes, we characterized that the channel opened by "only" NMDA (in nominally glycine-free condition probably with the inevitable nanomolar glycine) would undergo a novel form of deactivation rather than desensitization, and is thus fully available for subsequent activation. Moreover, external tetrapentylammonium ions (TPentA), tetrabutylammonium ions, and tetrapropylammonium ions (TPA, in higher concentrations) block the pore and prohibit channel desensitization with a simple "foot-in-the-door" hindrance effect. TpentA and TPA have the same voltage dependence but show different flow dependence in binding affinity, revealing a common binding site at an electrical distance of ~0.7 from the outside yet differential involvement of the flux-coupling region in the external pore mouth. The smaller tetraethylammonium ion and the larger tetrahexylammonium and tetraheptylammonium ions may block the channel but could not affect desensitization. We conclude that NMDA receptor desensitization requires concomitant binding of both glycine and glutamate, and thus movement of both GluN1 and GluN2 subunits. Desensitization gate itself embodies a highly restricted pore reduction with a physical distance of ~4 Å from the charged nitrogen atom of bound tetraalkylammonium ions, and is located very close to the activation gate in the bundle-crossing region in the external pore vestibule.


Subject(s)
Glutamic Acid/metabolism , Glycine/metabolism , Ion Channel Gating/physiology , Nerve Tissue Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/metabolism , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Female , Glutamic Acid/pharmacology , Glycine/pharmacology , Ion Channel Gating/drug effects , Ligands , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Protein Binding/drug effects , Protein Binding/physiology , Rats , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/genetics , Xenopus laevis
16.
Sci Rep ; 9(1): 12251, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31439884

ABSTRACT

Inherited erythromelalgia (IEM), caused by mutations in Nav1.7 channel is characterized by episodic neuropathic pain triggered especially by warm temperature. However, the mechanism underlying the temperature-dependent episodic attacks of IEM remains elusive. We investigated the electrophysiological effect of temperature changes on Nav1.7 channels with three different mutations, p.I136V, p. I848T, and p.V1316A, both in vitro and in vivo. In vitro biophysical studies of the mutant channels show consistent temperature-dependent enhancement of the relative resurgent currents if normalized to the transient currents, as well as temperature-dependent changes in the time to peak and the kinetics of decay of the resurgent currents, but no congruent temperature-dependent changes in steady-state parameters such as shift of activation/inactivation curves and changes of the absolute size of the window or resurgent currents. In vivo nerve excitability tests (NET) in IEM patients reveal the essentially normal indices of NET at a single stimulus. However, there are evident abnormalities if assessed with preconditioning pulses, such as the decrease of threshold elevation in hyperpolarizing threshold electrotonus (50-100 ms), the increase of inward rectification in current-voltage curve, and the increase of refractoriness at the interpulse interval of 2-6 ms in recovery cycle, probably also implicating derangements in temperature dependence of inactivation and of recovery from inactivation in the mutant channels. The pathogenesis of heat-enhanced pain in IEM could be attributed to deranged temperature dependence of Nav1.7 channels responsible for the genesis of resurgent currents.


Subject(s)
Erythromelalgia/genetics , NAV1.7 Voltage-Gated Sodium Channel/genetics , Neuralgia/metabolism , Sodium/metabolism , Erythromelalgia/congenital , Erythromelalgia/metabolism , Female , Hot Temperature , Humans , Male , Mutation, Missense , Neuralgia/congenital , Neuralgia/genetics , Patch-Clamp Techniques
17.
Mol Pharmacol ; 96(3): 330-344, 2019 09.
Article in English | MEDLINE | ID: mdl-31253645

ABSTRACT

hERG K+ channel is important for controlling the duration of cardiac action potentials. Amiodarone (AMD), a widely prescribed class III antiarrhythmic, could inhibit hERG currents with relatively few tachyarrhythmic adverse events. We use injected Xenopus oocyte with two-electrode voltage clamp techniques to characterize the action of AMD on hERG channels. We found that AMD binds to the resting hERG channel with an apparent dissociation constant of ∼1.4 µM, and inhibits hERG currents at mild and strong depolarization pulses by slowing activation and enhancing inactivation, respectively, at 22°C. The activation kinetics of hERG channel activation are much faster, but inactivation kinetics are slower at 37°C. AMD accordingly has a 15% to 20% weaker and stronger inhibitory effect at mild and strong depolarization (e.g., -60 and +30 mV, 0.3-second pulse), respectively. In the meanwhile, the resurgent hERG tail currents are dose-dependently inhibited by AMD without altering the kinetics of current decay at both 22°C and 37°C, indicating facilitation of recovery from inactivation via the silent route. Most importantly, AMD no longer inhibits but enhances hERG currents at a mild pulse shortly after a prepulse at 37°C, but not so much at 22°C. We conclude that AMD is an effective hERG channel-gating modifier capable of lengthening the plateau phase of cardiac action potential (without increasing the chance of afterdepolarization). AMD, however, should be used with caution in hypothermia or the other scenarios that slow hERG channel activation. SIGNIFICANCE STATEMENT: It is known that amiodarone (AMD) acts on hERG K+ channels to treat cardiac arrhythmias with relatively little arrhythmogenicity. We found that AMD enhances hERG channel inactivation but slows activation as well as recovery from inactivation, and thus has a differential inhibition and enhancement effect on hERG currents at different phases of membrane voltage changes, especially at 37°C, but not so much at 22°C. AMD is therefore a relatively ideal agent against tachyarrhythmia at 37°C, but should be more cautiously used at lower temperatures or relevant pathophysiological/pharmacological scenarios associated with slower hERG channel activation because of the increased chances of adverse events.


Subject(s)
Amiodarone/pharmacology , ERG1 Potassium Channel/metabolism , Potassium Channel Blockers/pharmacology , Xenopus laevis/genetics , Animals , Animals, Genetically Modified , Biophysical Phenomena , ERG1 Potassium Channel/antagonists & inhibitors , ERG1 Potassium Channel/genetics , Humans , Membrane Potentials/drug effects , Patch-Clamp Techniques , Temperature , Xenopus laevis/growth & development
18.
J Clin Invest ; 126(12): 4516-4526, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27797341

ABSTRACT

Neuronal oscillations at beta frequencies (20-50 Hz) in the cortico-basal ganglia circuits have long been the leading theory for bradykinesia, the slow movements that are cardinal symptoms in Parkinson's disease (PD). The beta oscillation theory helped to drive a frequency-based design in the development of deep brain stimulation therapy for PD. However, in contrast to this theory, here we have found that bradykinesia can be completely dissociated from beta oscillations in rodent models. Instead, we observed that bradykinesia is causatively regulated by the burst-firing pattern of the subthalamic nucleus (STN) in a feed-forward, or efferent-only, mechanism. Furthermore, STN burst-firing and beta oscillations are two independent mechanisms that are regulated by different NMDA receptors in STN. Our results shift the understanding of bradykinesia pathophysiology from an interactive oscillatory theory toward a feed-forward mechanism that is coded by firing patterns. This distinct mechanism may improve understanding of the fundamental concepts of motor control and enable more selective targeting of bradykinesia-specific mechanisms to improve PD therapy.


Subject(s)
Biological Clocks , Neurons , Parkinson Disease/physiopathology , Subthalamic Nucleus/physiopathology , Animals , Deep Brain Stimulation , Hypokinesia/pathology , Hypokinesia/physiopathology , Hypokinesia/therapy , Male , Parkinson Disease/pathology , Parkinson Disease/therapy , Rats , Rats, Wistar , Subthalamic Nucleus/pathology
19.
Sci Rep ; 6: 37029, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27848984

ABSTRACT

NMDA receptor channels are characterized by high Ca2+ permeability. It remains unclear whether extracellular Ca2+ could directly modulate channel gating and control Ca2+ influxes. We demonstrate a pore-blocking site external to the activation gate for extracellular Ca2+ and Cd2+, which has the same charge and radius as Ca2+ but is impermeable to the channel. The apparent affinity of Cd2+ or Ca2+ is higher toward the activated (a steady-state mixture of the open and desensitized, probably chiefly the latter) than the closed states. The blocking effect of Cd2+ is well correlated with the number of charges in the DRPEER motif at the external pore mouth, with coupling coefficients close to 1 in double mutant cycle analyses. The effect of Ca2+ and especially Cd2+ could be allosterically affected by T647A mutation located just inside the activation gate. A prominent "hook" also develops after wash-off of Cd2+ or Ca2+, suggesting faster unbinding rates of Cd2+ and Ca2+ with the mutation. We conclude that extracellular Ca2+ or Cd2+ directly binds to the DRPEER motif to modify NMDA channel activation (opening as well as desensitization), which seems to involve essential regional conformational changes centered at the bundle crossing point A652 (GluN1)/A651(GluN2).


Subject(s)
Cadmium/metabolism , Calcium/metabolism , Ion Channel Gating , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Binding Sites , Female , Mutagenesis, Site-Directed , Protein Binding , Rats , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Xenopus laevis
20.
PLoS Biol ; 14(9): e1002561, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27653502

ABSTRACT

The Nav1.7 channel critically contributes to the excitability of sensory neurons, and gain-of-function mutations of this channel have been shown to cause inherited erythromelalgia (IEM) with neuropathic pain. In this study, we report a case of a severe phenotype of IEM caused by p.V1316A mutation in the Nav1.7 channel. Mechanistically, we first demonstrate that the Navß4 peptide acts as a gating modifier rather than an open channel blocker competing with the inactivating peptide to give rise to resurgent currents in the Nav1.7 channel. Moreover, there are two distinct open and two corresponding fast inactivated states in the genesis of resurgent Na+ currents. One is responsible for the resurgent route and practically existent only in the presence of Navß4 peptide, whereas the other is responsible for the "silent" route of recovery from inactivation. In this regard, the p.V1316A mutation makes hyperpolarization shift in the activation curve, and depolarization shift in the inactivation curve, vividly uncoupling inactivation from activation. In terms of molecular gating operation, the most important changes caused by the p.V1316A mutation are both acceleration of the transition from the inactivated states to the activated states and deceleration of the reverse transition, resulting in much larger sustained as well as resurgent Na+ currents. In summary, the genesis of the resurgent currents in the Nav1.7 channel is ascribable to the transient existence of a distinct and novel open state promoted by the Navß4 peptide. In addition, S4-5 linker in domain III where V1316 is located seems to play a critical role in activation-inactivation coupling, chiefly via direct modulation of the transitional kinetics between the open and the inactivated states. The sustained and resurgent Na+ currents may therefore be correlatively enhanced by specific mutations involving this linker and relevant regions, and thus marked hyperexcitability in corresponding neural tissues as well as IEM symptomatology.

SELECTION OF CITATIONS
SEARCH DETAIL
...