Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Res Int ; 2017: 4732302, 2017.
Article in English | MEDLINE | ID: mdl-28791302

ABSTRACT

This study constructs a standard in vitro laser treatment platform with dental implant thread surface on bacterial adhesion for peri-implantitis at different tooth positions. The standard clinical adult tooth jaw model was scanned to construct the digital model with 6 mm bone loss depth on behalf of serious peri-implantitis at the incisor, first premolar, and first molar. A cylindrical suite connected to the implant and each tooth root in the jaw model was designed as one experimental unit set to allow the suite to be replaced for individual bacterial adhesion. The digital peri-implantitis and suite models were exported to fulfill the physical model using ABS material in a 3D printer. A 3 mm diameter specimen implant on bacterial adhesion against Escherichia coli was performed for gram-negative bacteria. An Er:YAG laser, working with a chisel type glass tip, was moved from the buccal across the implant thread to the lingual for about 30 seconds per sample to verify the in vitro laser treatment platform. The result showed that the sterilization rate can reach 99.3% and the jaw model was not damaged after laser irradiation testing. This study concluded that using integrated image processing, reverse engineering, CAD system, and a 3D printer to construct a peri-implantitis model replacing the implant on bacterial adhesion and acceptable sterilization rate proved the feasibility of the proposed laser treatment platform.


Subject(s)
Bacterial Adhesion , Dental Implants , Lasers, Solid-State/therapeutic use , Peri-Implantitis/microbiology , Peri-Implantitis/surgery , Alveolar Bone Loss/surgery , Bacterial Adhesion/radiation effects , Jaw/pathology , Printing, Three-Dimensional
2.
Appl Bionics Biomech ; 2016: 2458685, 2016.
Article in English | MEDLINE | ID: mdl-27504072

ABSTRACT

The microwave sintered zirconia ceramics with 0, 1, 3, and 5 wt% TiO2 addition at a low sintering temperature of 1300°C and a short holding time of 1 hour were investigated. Effect of contents of TiO2 addition on microstructure and mechanical properties of microwave sintered zirconia bioceramics was reported. In the sintered samples, the main phase is monoclinic zirconia (m-ZrO2) phase and minor phase is tetragonal zirconia (t-ZrO2) phase. The grain sizes increased with increasing the TiO2 contents under the sintering temperature of 1300°C. Although the TiO2 phase was not detected in the XRD pattern, Ti and O elements were detected in the EDS analysis. The presence of TiO2 effectively improved grain growth of the ZrO2 ceramics. The Vickers hardness was in the range of 125 to 300 Hv and increased with the increase of TiO2 contents. Sintering temperature dependence on the Vickers hardness was also investigated from 1150°C to 1300°C, showing the increase of Vickers hardness with the increase of the sintering temperature as well as TiO2 addition.

3.
Mater Sci Eng C Mater Biol Appl ; 37: 305-13, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24582253

ABSTRACT

Changes in the physical and chemical properties of Ti surfaces can be attributed to cell performance, which improves surface biocompatibility. The cell proliferation, mineralization ability, and gene expression of progenitor bone cells (D1 cell) were compared on five different Ti surfaces, namely, mechanical grinding (M), electrochemical modification through potentiostatic anodization (ECH), sandblasting and acid etching (SLA), sandblasting, hydrogen peroxide treatment, and heating (SAOH), and sandblasting, alkali heating, and etching (SMART). SAOH treatment produced the most hydrophilic surface, whereas SLA produced the most hydrophobic surface. Cell activity indicated that SLA and SMART produced significantly rougher surfaces and promoted D1 cell attachment within 1 day of culturing, whereas SAOH treatment produced moderate roughness (Ra=1.26µm) and accelerated the D1 cell proliferation up to 7 days after culturing. The ECH surface significantly promoted alkaline phosphatase (ALP) expression and osteocalcin (OCN) secretion in the D1 cells compared with the other surface groups. The ECH and SMART-treated Ti surfaces resulted in maximum ALP and OCN expressions during the D1 cell culture. SLA, SAOH, and SMART substrate surfaces were rougher and exhibited better cell metabolic responses during the early stage of cell attachment, proliferation, and morphologic expressions within 1 day of D1 cell culture. The D1 cells cultured on the ECH and SMART substrates exhibited higher differentiation, and higher ALP and OCN expressions after 10 days of culture. Thus, the ECH and SMART treatments promote better ability of cell mineralization in vitro, which demonstrate their great potential for clinical use.


Subject(s)
Bone and Bones/cytology , Stem Cells/cytology , Titanium/chemistry , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Calcification, Physiologic , Cell Adhesion , Cell Line , Cell Proliferation , Humans , Osteocalcin/genetics , Osteocalcin/metabolism , Prostheses and Implants , Stem Cells/metabolism , Surface Properties
4.
Article in English | MEDLINE | ID: mdl-24110066

ABSTRACT

INTRODUCTION: Many microvascular anastomoses have been proposed for use with physical assisted methods, such as cuff, ring-pin, stapler, clip to the anastomose blood vessel. The ring-pin type anastomotic device (e.g., 3M Microvascular Anastomotic System) is the most commonly used worldwide because the anastomotic procedure can be conducted more rapidly and with fewer traumas than using sutures. However, problems including vessel leakage, ring slippage, high cost and high surgical skill demand need to be resolved. The aim of this study is to design and manufacture a new anastomotic device for microvascular anastomosis surgery and validate the device functions with in-vitro testing. METHODS: The new device includes one pair of pinned rings and a set of semi-automatic flap apparatus designed and made using computer-aided design / computer-aided manufacture program. A pair of pinned rings was used to impale vessel walls and establish fluid communication with rings joined. The semi-automatic flap apparatus was used to assist the surgeon to invert the vessel walls and impale onto each ring pin, then turning the apparatus knob to bring the rings together. The device was revised until it became acceptable for clinical requires. An in-vitro test was performed using a custom-made seepage micro-fluid system to detect the leakage of the anastomotic rings. The variation between input and output flow for microvascular anastomoses was evaluated. RESULTS: The new microvascular anastomotic device was convenient and easy to use. It requires less time than sutures to invert and impale vessel walls onto the pinned rings using the semi-automatic flap apparatus. The in-vitro test data showed that there were no tears from the joined rings seam during the procedures. CONCLUSIONS: The new anastomotic devices are effective even with some limitations still remaining. This device can be helpful to simplify the anastomosis procedure and reduce the surgery time.


Subject(s)
Anastomosis, Surgical/instrumentation , Surgery, Computer-Assisted/methods , Surgical Flaps , Algorithms , Anastomosis, Surgical/methods , Animals , Benzophenones , Blood Vessels/pathology , Computer-Aided Design , Equipment Design , Fishes , Humans , Intestines/surgery , Ketones/chemistry , Microcirculation , Microsurgery/instrumentation , Polyethylene Glycols/chemistry , Polymers , Signal Processing, Computer-Assisted , Software , Surgical Instruments , Sutures
5.
Injury ; 44(4): 527-34, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23099020

ABSTRACT

This study determines the relative effects of changes in osteoporosis condition, plate/screw design factors (plate angle/length/width/thickness and screw diameter) and fixation methods (screw number and screw length) on the biomechanical response of dorsal double plating (DDP) fixation at a distal radius fracture to determine the optimal design and evaluate its biomechanical strength using the dynamic fatigue test. Eighteen CAD and finite element (FE) models corresponding to a Taguchi L18 array were constructed to perform numerical simulations to simulate the mechanical responses of a DDP fixed in a simply distal radius fracture bone. The Taguchi method was employed to determine the significance of each design factor in controlling bone/plate/screw stress and distal fragment displacement under axial (100 N), bending (1 N m) and torsion (1 N m) loads. Simulation results indicated that the order rank to determine the mechanical response was the plate thickness, plate width, screw diameter, and number of screws. Dorsal intermediate (L) plate with 60 mm length, 1.8 mm thickness, 6.0 mm width and 2.8 mm diameter, 20 mm length dual-thread locking screw can be found for optimisation. The DDP, including an L plate with 0°, 30° and 60° angles and a straight I plate, were made with Ti6Al4V to fix onto the sawbones with three corresponding radius fractures to perform the dynamic testing. The specimens were oscillated with loads between 10 N and 150 N at 5 Hz for 20,000 cycles. The average stiffness in 20,000 test cycles was 425.7 N/mm, 461.1 N/mm and 532.1N/mm for the 0°, 30° and 60° constructs, respectively. No difference in stiffness was found in the same angled constructs throughout the 20,000 cycles of testing (p > 0.05). Lack of gross construct failures during cyclic testing and reasonable stiffness corroborated that our new constructs tested to date seem stable enough to support restricted post-operative loads.


Subject(s)
Fracture Fixation, Internal/methods , Osteoporosis/surgery , Radius Fractures/surgery , Biomechanical Phenomena , Bone Plates , Equipment Design , Fracture Fixation, Internal/instrumentation , Humans , Models, Biological , Stress, Mechanical , Taiwan
6.
Bioinorg Chem Appl ; 2012: 687291, 2012.
Article in English | MEDLINE | ID: mdl-22287942

ABSTRACT

The major challenge for dental implants is achieving optimal esthetic appearance and a concept to fulfill this criterion is evaluated. The key to an esthetically pleasing appearance lies in the properly manage the soft tissue profile around dental implants. A novel implant restoration technique on the surface was proposed as a way to augment both soft- and hard-tissue profiles at potential implant sites. Different levels of roughness can be attained by sandblasting and acid etching, and a tetracalcium phosphate was used to supply the ions. In particular, the early stage attaching and repopulating abilities of bone cell osteoblasts (MC3T3-E1), fibroblasts (NIH 3T3), and epithelial cells (XB-2) were evaluated. The results showed that XB-2 cell adhesive qualities of a smooth surface were better than those of the roughened surfaces, the proliferative properties were reversed. The effects of roughness on the characteristics of 3T3 cells were opposite to the result for XB-2 cells. E1 proliferative ability did not differ with any statistical significance. These results suggest that a rougher surface which provided calcium and phosphate ions have the ability to enhance the proliferation of osteoblast and the inhibition of fibroblast growth that enhance implant success ratios.

SELECTION OF CITATIONS
SEARCH DETAIL
...