Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(33): 37958-37966, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35968578

ABSTRACT

n-type Mg3Sb2-Mg3Bi2 alloys have been investigated as one of the most promising thermoelectric materials. To achieve high performance, a detailed understanding of the microstructure is required. Although Mg3Sb2-Mg3Bi2 is usually considered to be a complete solid solution, nanosized compositional fluctuations were observed within a matrix and in the vicinity of the grain boundary. As an inhomogeneous microstructure can be beneficial or detrimental to thermoelectric performance, it is important to investigate the evolution of compositional variations for the engineering and long-term use of these materials. Using scanning transmission electron microscopy and atom probe tomography, a Bi-rich phase and compositional fluctuations are observed in sintered and annealed samples. After annealing, the broad intergranular phase was sharpened, resulting in a greater compositional change in the intergranular region. Annealing considerably reduces the fluctuations of Bi and Mg content within the grain as observed in atom probe tomography. Weighted mobility and lattice thermal conductivity were both increased as a result of the homogenized matrix phase. The combined microstructure features of intragrain and grain boundary effects resulted in an increased thermoelectric figure-of-merit zT of Mg3Sb0.6Bi1.4. These findings imply that the optimization of thermal and electrical properties can be realized through microstructure tuning.

2.
Adv Mater ; 32(16): e1908218, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32115799

ABSTRACT

Mg3 (Sb,Bi)2 alloys have recently been discovered as a competitive alternative to the state-of-the-art n-type Bi2 (Te,Se)3 thermoelectric alloys. Previous theoretical studies predict that single crystals Mg3 (Sb,Bi)2 can exhibit higher thermoelectric performance near room temperature by eliminating grain boundary resistance. However, the intrinsic Mg defect chemistry makes it challenging to grow n-type Mg3 (Sb,Bi)2 single crystals. Here, the first thermoelectric properties of n-type Te-doped Mg3 Sb2 single crystals, synthesized by a combination of Sb-flux method and Mg-vapor annealing, is reported. The electrical conductivity and carrier mobility of single crystals exhibit a metallic behavior with a typical T-1.5 dependence, indicating that phonon scattering dominates the charge carrier transport. The absence of any evidence of ionized impurity scattering in Te-doped Mg3 Sb2 single crystals proves that the thermally activated mobility previously observed in polycrystalline materials is caused by grain boundary resistance. Eliminating this grain boundary resistance in the single crystals results in a large enhancement of the weighted mobility and figure of merit zT by more than 100% near room temperature. This work experimentally demonstrates the accurate understanding of charge-carrier scattering is crucial for developing high-performance thermoelectric materials and indicates that single-crystalline Mg3 (Sb,Bi)2 solid solutions can exhibit higher zT compared to polycrystalline samples.

3.
Adv Mater ; 31(35): e1902337, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31273874

ABSTRACT

Materials with high zT over a wide temperature range are essential for thermoelectric applications. n-Type Mg3 Sb2 -based compounds have been shown to achieve high zT at 700 K, but their performance at low temperatures (<500 K) is compromised due to their highly resistive grain boundaries. Syntheses and optimization processes to mitigate this grain-boundary effect has been limited due to loss of Mg, which hinders a sample's n-type dopability. A Mg-vapor anneal processing step that grows a sample's grain size and preserves its n-type carrier concentration during annealing is demonstrated. The electrical conductivity and mobility of the samples with large grain size follows a phonon-scattering-dominated T-3/2 trend over a large temperature range, further supporting the conclusion that the temperature-activated mobility in Mg3 Sb2 -based materials is caused by resistive grain boundaries. The measured Hall mobility of electrons reaches 170 cm2 V-1 s-1 in annealed 800 °C sintered Mg3 + δ Sb1.49 Bi0.5 Te0.01 , the highest ever reported for Mg3 Sb2 -based thermoelectric materials. In particular, a sample with grain size >30 mm has a zT 0.8 at 300 K, which is comparable to commercial thermoelectric materials used at room temperature (n-type Bi2 Te3 ) while reaching zT 1.4 at 700 K, allowing applications over a wider temperature scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...