Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 653, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253575

ABSTRACT

Transition metal dichalcogenides, by virtue of their two-dimensional structures, could provide the largest active surface for reactions with minimal materials consumed, which has long been pursued in the design of ideal catalysts. Nevertheless, their structurally perfect basal planes are typically inert; their surface defects, such as under-coordinated atoms at the surfaces or edges, can instead serve as catalytically active centers. Here we show a reaction probability > 90 % for adsorbed methanol (CH3OH) on under-coordinated Pt sites at surface Te vacancies, produced with Ar+ bombardment, on layered PtTe2 - approximately 60 % of the methanol decompose to surface intermediates CHxO (x = 2, 3) and 35 % to CHx (x = 1, 2), and an ultimate production of gaseous molecular hydrogen, methane, water and formaldehyde. The characteristic reactivity is attributed to both the triangular positioning and varied degrees of oxidation of the under-coordinated Pt at Te vacancies.

2.
ACS Appl Mater Interfaces ; 15(12): 16153-16161, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36802501

ABSTRACT

Layered transition metal dichalcogenides (TMDs) are two-dimensional materials exhibiting a variety of unique features with great potential for electronic and optoelectronic applications. The performance of devices fabricated with mono or few-layer TMD materials, nevertheless, is significantly affected by surface defects in the TMD materials. Recent efforts have been focused on delicate control of growth conditions to reduce the defect density, whereas the preparation of a defect-free surface remains challenging. Here, we show a counterintuitive approach to decrease surface defects on layered TMDs: a two-step process including Ar ion bombardment and subsequent annealing. With this approach, the defects, mainly Te vacancies, on the as-cleaved PtTe2 and PdTe2 surfaces were decreased by more than 99%, giving a defect density <1.0 × 1010 cm-2, which cannot be achieved solely with annealing. We also attempt to propose a mechanism behind the processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...