Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 291(2017): 20232250, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378144

ABSTRACT

In birds, the quadrate connects the mandible and skull, and plays an important role in cranial kinesis. Avian quadrate morphology may therefore be assumed to have been influenced by selective pressures related to feeding ecology, yet large-scale variation in quadrate morphology and its potential relationship with ecology have never been quantitatively investigated. Here, we used geometric morphometrics and phylogenetic comparative methods to quantify morphological variation of the quadrate and its relationship with key ecological features across a wide phylogenetic sample. We found non-significant associations between quadrate shape and feeding ecology across different scales of phylogenetic comparison; indeed, allometry and phylogeny exhibit stronger relationships with quadrate shape than ecological features. We show that similar quadrate shapes are associated with widely varying dietary ecologies (one-to-many mapping), while divergent quadrate shapes are associated with similar dietary ecologies (many-to-one mapping). Moreover, we show that the avian quadrate evolves as an integrated unit and exhibits strong associations with the morphologies of neighbouring bones. Our results collectively illustrate that quadrate shape has evolved jointly with other elements of the avian kinetic system, with the major crown bird lineages exploring alternative quadrate morphologies, highlighting the potential diagnostic value of quadrate morphology in investigations of bird systematics.


Subject(s)
Birds , Skull , Animals , Phylogeny , Birds/anatomy & histology , Skull/anatomy & histology , Head , Mandible , Biological Evolution
2.
J Morphol ; 284(6): e21594, 2023 06.
Article in English | MEDLINE | ID: mdl-37183494

ABSTRACT

In birds and other reptiles, the quadrate acts as a hinge between the lower jaw and the skull and plays an important role in avian cranial kinesis. Though previous studies have qualitatively described substantial variation in quadrate morphology among birds, none have attempted to quantify evolutionary changes in quadrate shape. Here, we investigate geometric evolution of the quadrate in Galloanserae, a major clade of extant birds uniting chicken-like (Galliformes) and duck-like (Anseriformes) fowl. We quantified morphological variation in the quadrate across 50 extant galloanseran species covering all major extant subclades using three-dimensional geometric morphometrics, and performed ancestral shape reconstructions in the context of an up-to-date neornithine phylogeny. We find that our results based only on extant quadrates may overlook plesiomorphic features captured by fossil taxa, resulting in an ancestral state reconstruction for Galloanserae that is seemingly an approximation of the average shape of the extant data set. By contrast, analyses incorporating early fossil galloanseran quadrates (from taxa such as Asteriornis, Presbyornis, and Conflicto) result in ancestral geometric reconstructions more similar to the morphology of extant galliforms, indicating that the quadrate of the last common ancestor of galloanserans may have been more morphologically and functionally similar to those of extant galliforms than to extant anseriforms. These results generally corroborate previous inferences of galloanseran quadrate plesiomorphies and identify several additional plesiomorphic features of the galloanseran quadrate for the first time. Our results illustrate the importance of incorporating fossil taxa into ancestral shape reconstructions and help elucidate important aspects of the morphology and function of the avian feeding apparatus early in crown bird evolutionary history.


Subject(s)
Fossils , Skull , Animals , Skull/anatomy & histology , Phylogeny , Jaw/anatomy & histology , Chickens , Biological Evolution
3.
Nature ; 612(7938): 100-105, 2022 12.
Article in English | MEDLINE | ID: mdl-36450906

ABSTRACT

The bony palate diagnoses the two deepest clades of extant birds: Neognathae and Palaeognathae1-5. Neognaths exhibit unfused palate bones and generally kinetic skulls, whereas palaeognaths possess comparatively rigid skulls with the pterygoid and palatine fused into a single element, a condition long considered ancestral for crown birds (Neornithes)3,5-8. However, fossil evidence of palatal remains from taxa close to the origin of Neornithes is scarce, hindering strong inferences regarding the ancestral condition of the neornithine palate. Here we report a new taxon of toothed Late Cretaceous ornithurine bearing a pterygoid that is remarkably similar to those of the extant neognath clade Galloanserae (waterfowl + landfowl). Janavis finalidens, gen. et sp. nov., is generally similar to the well-known Mesozoic ornithurine Ichthyornis in its overall morphology, although Janavis is much larger and exhibits a substantially greater degree of postcranial pneumaticity. We recovered Janavis as the first-known well-represented member of Ichthyornithes other than Ichthyornis, clearly substantiating the persistence of the clade into the latest Cretaceous9. Janavis confirms the presence of an anatomically neognathous palate in at least some Mesozoic non-crown ornithurines10-12, suggesting that pterygoids similar to those of extant Galloanserae may be plesiomorphic for crown birds. Our results, combined with recent evidence on the ichthyornithine palatine12, overturn longstanding assumptions about the ancestral crown bird palate, and should prompt reevaluation of the purported galloanseran affinities of several bizarre early Cenozoic groups such as the 'pseudotoothed birds' (Pelagornithidae)13-15.


Subject(s)
Birds , Fossils , Phylogeny , Animals , Birds/anatomy & histology , Birds/classification , Skull/anatomy & histology
4.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882839

ABSTRACT

Compromised autophagy and mitochondrial dysfunction downregulate chondrocytic activity, accelerating the development of osteoarthritis (OA). Irisin, a cleaved form of fibronectin type III domain containing 5 (FNDC5), regulates bone turnover and muscle homeostasis. Little is known about the effect of Irisin on chondrocytes and the development of osteoarthritis. This study revealed that human osteoarthritic articular chondrocytes express decreased level of FNDC5 and autophagosome marker LC3-II but upregulated levels of oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) and apoptosis. Intra-articular administration of Irisin further alleviated symptoms of medial meniscus destabilization, like cartilage erosion and synovitis, while improved the gait profiles of the injured legs. Irisin treatment upregulated autophagy, 8-OHdG and apoptosis in chondrocytes of the injured cartilage. In vitro, Irisin improved IL-1ß-mediated growth inhibition, loss of specific cartilage markers and glycosaminoglycan production by chondrocytes. Irisin also reversed Sirt3 and UCP-1 pathways, thereby improving mitochondrial membrane potential, ATP production, and catalase to attenuated IL-1ß-mediated reactive oxygen radical production, mitochondrial fusion, mitophagy, and autophagosome formation. Taken together, FNDC5 loss in chondrocytes is correlated with human knee OA. Irisin repressed inflammation-mediated oxidative stress and extracellular matrix underproduction through retaining mitochondrial biogenesis, dynamics and autophagic program. Our analyses shed new light on the chondroprotective actions of this myokine, and highlight the remedial effects of Irisin on OA development.

5.
Int J Mol Sci ; 21(14)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664681

ABSTRACT

Bone turnover is sophisticatedly balanced by a dynamic coupling of bone formation and resorption at various rates. The orchestration of this continuous remodeling of the skeleton further affects other skeletal tissues through organ crosstalk. Chronic excessive bone resorption compromises bone mass and its porous microstructure as well as proper biomechanics. This accelerates the development of osteoporotic disorders, a leading cause of skeletal degeneration-associated disability and premature death. Bone-forming cells play important roles in maintaining bone deposit and osteoclastic resorption. A poor organelle machinery, such as mitochondrial dysfunction, endoplasmic reticulum stress, and defective autophagy, etc., dysregulates growth factor secretion, mineralization matrix production, or osteoclast-regulatory capacity in osteoblastic cells. A plethora of epigenetic pathways regulate bone formation, skeletal integrity, and the development of osteoporosis. MicroRNAs inhibit protein translation by binding the 3'-untranslated region of mRNAs or promote translation through post-transcriptional pathways. DNA methylation and post-translational modification of histones alter the chromatin structure, hindering histone enrichment in promoter regions. MicroRNA-processing enzymes and DNA as well as histone modification enzymes catalyze these modifying reactions. Gain and loss of these epigenetic modifiers in bone-forming cells affect their epigenetic landscapes, influencing bone homeostasis, microarchitectural integrity, and osteoporotic changes. This article conveys productive insights into biological roles of DNA methylation, microRNA, and histone modification and highlights their interactions during skeletal development and bone loss under physiological and pathological conditions.


Subject(s)
Bone Remodeling/genetics , Epigenesis, Genetic , Osteoporosis/genetics , Adipogenesis , Animals , Autophagy , Bone Resorption/genetics , DNA Methylation , Disease Models, Animal , Endoribonucleases/physiology , Histone Code , Histone Deacetylases/physiology , Histone Methyltransferases/physiology , Homeostasis , Humans , Mice , MicroRNAs/blood , MicroRNAs/genetics , Mitophagy , Organelles/physiology , Osteoblasts/physiology , Osteoblasts/ultrastructure , Osteoporosis/metabolism , Polymorphism, Single Nucleotide
6.
Cells ; 9(6)2020 06 19.
Article in English | MEDLINE | ID: mdl-32575577

ABSTRACT

Glucocorticoid provokes bone mass loss and fatty marrow, accelerating osteoporosis development. Bromodomain protein BRD4, an acetyl-histone-binding chromatin reader, regulates stem cell and tissue homeostasis. We uncovered that glucocorticoid inhibited acetyl Lys-9 at the histone 3 (H3K9ac)-binding Runx2 promoter and decreased osteogenic differentiation, whereas bromodomain protein 4 (BRD4) and adipocyte formation were upregulated in bone-marrow mesenchymal progenitor cells. BRD4 knockdown improved H3K9ac occupation at the Runx2 promoter and osteogenesis, but attenuated glucocorticoid-mediated adipocyte formation together with the unaffected H3K9ac-binding PPARγ2 promoter. BRD4 regulated epigenome related to fatty acid metabolism and the forkhead box P1 (Foxp1) pathway, which occupied the PPARγ2 promoter to modulate glucocorticoid-induced adipocytic activity. In vivo, BRD4 inhibitor JQ-1 treatment mitigated methylprednisolone-induced suppression of bone mass, trabecular microstructure, mineral acquisition, and osteogenic differentiation. Foxp1 signaling, marrow fat, and adipocyte formation in glucocorticoid-treated skeleton were reversed upon JQ-1 treatment. Taken together, glucocorticoid-induced H3K9 hypoacetylation augmented BRD4 action to Foxp1, which steered mesenchymal progenitor cells toward adipocytes at the cost of osteogenic differentiation in osteoporotic skeletons. BRD4 inhibition slowed bone mass loss and marrow adiposity. Collective investigations convey a new epigenetic insight into acetyl histone reader BRD4 control of osteogenesis and adipogenesis in skeleton, and highlight the remedial effects of the BRD4 inhibitor on glucocorticoid-induced osteoporosis.


Subject(s)
Adipogenesis/physiology , Bone Marrow/metabolism , Cell Cycle Proteins/metabolism , Glucocorticoids/metabolism , Transcription Factors/metabolism , Cell Differentiation/drug effects , Glucocorticoids/pharmacology , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/drug effects , Osteogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...