Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biomedicines ; 12(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38672261

ABSTRACT

Glioblastoma (GBM), the most aggressive form of brain cancer, is characterized by rapid growth and resistance to conventional therapies. Current treatments offer limited effectiveness, leading to poor survival rates and the need for novel therapeutic strategies. Arylquin 1 has emerged as a potential therapeutic candidate because of its unique mechanism of inducing apoptosis in cancer cells without affecting normal cells. This study investigated the efficacy of Arylquin 1 against GBM using the GBM8401 and A172 cells by assessing its dose-dependent cytotoxicity, apoptosis induction, and synergy with radiotherapy. In vitro assays demonstrated a significant reduction in cell viability and increased apoptosis, particularly at high concentrations of Arylquin 1. Migration and invasion analyses revealed notable inhibition of cellular motility. In vivo experiments on NU/NU nude mice with intracranially implanted GBM cells revealed that Arylquin 1 substantially reduced tumor growth, an effect magnified by concurrent radiotherapy. These findings indicate that by promoting apoptosis and enhancing radiosensitivity, Arylquin 1 is a potent therapeutic option for GBM treatment.

2.
Cells ; 12(19)2023 10 09.
Article in English | MEDLINE | ID: mdl-37830634

ABSTRACT

Glioblastoma (GBM) stands as the most prevalent primary malignant brain tumor, typically resulting in a median survival period of approximately thirteen to fifteen months after undergoing surgery, chemotherapy, and radiotherapy. Nucleobindin-2 (NUCB2) is a protein involved in appetite regulation and energy homeostasis. In this study, we assessed the impact of NUCB2 expression on tumor progression and prognosis of GBM. We further evaluated the relationship between NUCB2 expression and the sensitivity to chemotherapy and radiotherapy in GBM cells. Additionally, we compared the survival of mice intracranially implanted with GBM cells. High NUCB2 expression was associated with poor prognosis in patients with GBM. Knockdown of NUCB2 reduced cell viability, migration ability, and invasion ability of GBM cells. Overexpression of NUCB2 resulted in reduced apoptosis following temozolomide treatment and increased levels of DNA damage repair proteins after radiotherapy. Furthermore, mice intracranially implanted with NUCB2 knockdown GBM cells exhibited longer survival compared to the control group. NUCB2 may serve as a prognostic biomarker for poor outcomes in patients with GBM. Additionally, NUCB2 not only contributes to tumor progression but also influences the sensitivity of GBM cells to chemotherapy and radiotherapy. Therefore, targeting NUCB2 protein expression may represent a novel therapeutic approach for the treatment of GBM.


Subject(s)
Glioblastoma , Humans , Animals , Mice , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Nucleobindins/therapeutic use , Cell Line, Tumor , Temozolomide/pharmacology , Temozolomide/therapeutic use
3.
Cells ; 12(11)2023 05 25.
Article in English | MEDLINE | ID: mdl-37296596

ABSTRACT

5-FU-based chemoradiotherapy (CRT) and oxaliplatin-based CRT are commonly used therapies for advanced colorectal cancer (CRC). However, patients with a high expression of ERCC1 have a worse prognosis than those with a low expression. In this study, we investigated the effect of XPF-ERCC1 blockers on chemotherapy and 5-FU-based CRT and oxaliplatin (OXA)-based CRT in colorectal cancer cell lines. We investigated the half-maximal inhibitory concentration (IC50) of 5-FU, OXA, XPF-ERCC1 blocker, and XPF-ERCC1 blocker, and 5-FU or OXA combined and analyzed the effect of XPF-ERCC1 blocker on 5-FU-based CRT and oxaliplatin-based CRT. Furthermore, the expression of XPF and γ-H2AX in colorectal cells was analyzed. In animal models, we combined the XPF-ERCC1 blocker with 5-FU and OXA to investigate the effects of RC and finally combined the XPF-ERCC1 blocker with 5-FU- and oxaliplatin-based CRT. In the IC50 analysis of each compound, the cytotoxicity of the XPF-ERCC1 blocker was lower than that of 5-FU and OXA. In addition, the XPF-ERCC1 blocker combined with 5-FU or OXA enhanced the cytotoxicity of the chemotherapy drugs in colorectal cells. Furthermore, the XPF-ERCC1 blocker also increased the cytotoxicity of 5-FU-based CRT and OXA -based CRT by inhibiting the XPF product DNA locus. In vivo, the XPF-ERCC1 blocker was confirmed to enhance the therapeutic efficacy of 5-FU, OXA, 5-FU-based CRT, and OXA CRT. These findings show that XPF-ERCC1 blockers not only increase the toxicity of chemotherapy drugs but also increase the efficacy of combined chemoradiotherapy. In the future, the XPF-ERCC1 blocker may be used to improve the efficacy of 5-FU- and oxaliplatin-based CRT.


Subject(s)
Colorectal Neoplasms , Fluorouracil , Animals , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , DNA-Binding Proteins/metabolism , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Organoplatinum Compounds/pharmacology , Organoplatinum Compounds/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/etiology , Chemoradiotherapy
4.
Cancers (Basel) ; 14(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36230725

ABSTRACT

Preoperative concurrent chemoradiotherapy (CCRT) is a standard treatment for locally advanced rectal cancer patients, but 20-30% do not benefit from the desired therapeutic effects. Previous reports indicate that high levels of ERCC1 reduce the effectiveness of cisplatin-based CCRT; however, it remains unclear as to whether ERCC1 overexpression increases radiation resistance. To clarify the correlation between ERCC1 levels and radiation (RT) resistance, we established two cell lines (HCT116-Tet-on and COLO205-Tet-on), induced them to overexpress ERCC1, detected cell survival following exposure to radiation, established HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models, and detected tumor volume following exposure to radiation. We found that ERCC1 overexpression increased radiation resistance. After regulating ERCC1 levels and radiation exposure to verify the correlation, we noted that increased radiation resistance was dependent on ERCC1 upregulation in both cell lines. For further verification, we exposed HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models to radiation and observed that ERCC1 overexpression increased colorectal cancer tumor radioresistance in both. Combined, our results suggest that ERCC1 overexpression may serve as a suitable CCRT prognostic marker for colorectal cancer patients.

5.
J Oncol ; 2022: 7250278, 2022.
Article in English | MEDLINE | ID: mdl-36185623

ABSTRACT

Background: Glioblastoma multiforme (GBM) is one of the most deadly and recalcitrant illnesses of the neurocentral nervous system in humans. MicroRNAs (miRNAs) are a class of noncoding RNAs that play important roles in the regulation of gene expression and biological processes, including radiosensitivity. In this study, we demonstrated the relationship between miR-3059-3p and radiation in GBM. Materials and Methods: Radioresistant (RR) cells were obtained by exposing GBM8401 cells to 80 Gy radiation in 20 weekly 4 Gy fractions. miR-3059-3p mRNA and DNA replication helicase/nuclease 2 (DNA2) protein expressions were detected using real-time polymerase chain reaction and immunoblotting. Using flow cytometry, colony formation and apoptosis were identified using miR-3059-3p mimic, miR-3059-3p inhibitor, DNA2 siRNA, and DNA2 plasmid. Immunoblotting was used to detect DNA repair proteins. Results: Low levels of miR-3059-3p and high levels of DNA2 were observed in RR cells. Colony formation and apoptosis assays revealed that miR-3059-3p targeted DNA2 to regulate radioresistance. Immunoblotting revealed that miR-3059-3p regulated the homologous recombination (HR) pathway (Rad51 and Rad52) but not the nonhomologous end joining pathway (ku70 and ku80). Conclusion: Downregulation of DNA2 via miR-3059-3p enhanced the radiosensitivity of GBM cells through the inhibition of the HR pathway.

6.
Hum Cell ; 35(6): 1912-1927, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36053457

ABSTRACT

Serine peptidase inhibitor Kazal type-1 (SPINK1), a trypsin kinase inhibitor, is known to be associated with inflammation and pathogenesis. The aim in this study was to demonstrate the clinicopathological role and progression of SPINK1 in rectal cancer (RC) patients undergoing concurrent chemoradiotherapy (CCRT). Immunohistochemical staining for SPINK1 protein expression in 111 RC cases revealed high SPINK1 expression was significantly associated with perineural invasion and poor CCRT response in pre-CCRT specimens. In addition, multivariable analyses showed that pre-CCRT SPINK1 expression was a significant prognostic marker of both overall and disease-free survival in RC patients receiving pre-operative CCRT; furthermore, in vitro studies demonstrated SPINK1 interacted with EGFR to promote the abilities of proliferation, migration and invasion attenuated by SPINK1 si-RNA via ERK, p38, and JNK pathways. SPINK1 was also found to regulate radio-resistance in CRC cell lines. In conclusion, SPINK1 expression is an independent prognostic marker in patients receiving pre-operative CCRT, and SPINK1 regulates proliferation, migration and invasion via EGFR-downstream ERK, p38 and JNK pathways. The phenotypes of radiosensitivity that could be reversed with attenuation of SPINK1 levels suggest that targeting SPINK1 might offer a strategy for optimal precision medicine.


Subject(s)
Rectal Neoplasms , Trypsin Inhibitor, Kazal Pancreatic , Cell Proliferation/genetics , Chemoradiotherapy , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Precision Medicine , Protease Inhibitors , RNA , Rectal Neoplasms/genetics , Rectal Neoplasms/therapy , Serine , Trypsin , Trypsin Inhibitor, Kazal Pancreatic/genetics
7.
Cancers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36011045

ABSTRACT

Purpose: Preoperative concurrent chemoradiotherapy (CCRT) is the standard treatment for locally advanced rectal cancer patients. However, the poor therapeutic efficacy of CCRT was found in rectal cancer patients with hyperglycemia. This study investigated how hyperglycemia affects radiochemotherapy resistance in rectal cancer. Methods and Materials: We analyzed the correlation between prognosis indexes with hypoxia-inducible factor-1 alpha (HIF-1α) in rectal cancer patients with preoperative CCRT. In vitro, we investigated the effect of different concentrated glucose of environments on the radiation tolerance of rectal cancers. Further, we analyzed the combined HIF-1α inhibitor with radiation therapy in hyperglycemic rectal cancers. Results: The prognosis indexes of euglycemic or hyperglycemic rectal cancer patients after receiving CCRT treatment were investigated. The hyperglycemic rectal cancer patients (n = 13, glycosylated hemoglobin, HbA1c > 6.5%) had poorer prognosis indexes. In addition, a positive correlation was observed between HIF-1α expression and HbA1c levels (p = 0.046). Therefore, it is very important to clarify the relationship between HIF-1α and poor response in patients with hyperglycemia receiving pre-operative CCRT. Under a high glucose environment, rectal cancer cells express higher levels of glucose transport 1 (GLUT1), O-GlcNAc transferase (OGT), and HIF-1α, suggesting that the high glucose environment might stimulate HIF-1α expression through the GLUT1-OGT-HIF-1α pathway promoting tolerance to Fluorouracil (5-FU) and radiation. In the hyperglycemic rectal cancer animal model, rectal cancer cells confirmed that radiation exposure reduces apoptosis by overexpressing HIF-1α. Combining HIF-1α inhibitors was able to reverse radioresistance in a high glucose environment. Lower HIF-1α levels increased DNA damage in tumors leading to apoptosis. Conclusions: The findings here show that hyperglycemia induces the expression of GLUT1, OGT, and HIF-1α to cause CCRT tolerance in rectal cancer and suggest that combining HIF-1α inhibitors could reverse radioresistance in a high glucose environment. HIF-1α inhibitors may be useful for development as CCRT sensitizers in patients with hyperglycemic rectal cancer.

8.
Radiat Oncol ; 17(1): 91, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35549962

ABSTRACT

BACKGROUND: To analyze the prognostic factors associated with stage IB-IVA cervical cancer in patients who underwent concurrent chemoradiation therapy (CCRT) and to compare the clinical toxicities and dosimetric parameters of organs at risk between the different radiotherapy techniques. METHODS: This retrospective study enrolled 93 patients with stage IB-IVA cervical cancer who underwent definitive CCRT between April 2009 and December 2017. Nine patients (9.7%) received 3DCRT, 43 patients (46.2%) underwent VMAT, and 41 patients (44.1%) received tomotherapy, and all of them followed by brachytherapy using a 2D planning technique. The treatment outcomes and related prognostic factors were analyzed. We also compared the clinical toxicities and dosimetric parameters between the different techniques used for the last 30 patients. RESULTS: With a median follow-up of 52.0 months, the 5-year overall survival (OS), progression-free survival (PFS), locoregional recurrence-free survival (LRRFS), and distant metastases-free survival (DMFS) were analyzed. In a Cox proportional hazards regression model, pretreatment SCC Ag > 10 ng/mL was a significant prognostic factor for PFS (hazard ratio [HR] 2.20; 95% confidence interval [CI] 1.03-4.70; P = 0.041), LRRFS (HR, 3.48; 95% CI 1.07-11.26; P = 0.038), and DMFS (HR 2.80; 95% CI 1.02-7.67; P = 0.045). Increasing the rectal volume receiving a radiation dose exceeding 30 Gy (V30 of rectum; odds ratio [OR] 1.15; 95% CI 1.10-1.30; P = 0.03) was associated with a higher possibility of ≥ Grade 2 acute radiation therapy (RT)-related diarrhea. The median rectal V30 values were 56.4%, 97.5%, and 86.5% for tomotherapy, 3-dimensional conformal radiation therapy (3DCRT), and volumetric modulated arc therapy (VMAT), respectively (P < 0.001). In addition, the chance of experiencing ≥ Grade 2 acute diarrhea were 10.0%, 66.7%, and 54.5% for tomotherapy, 3DCRT, and VMAT, respectively (P = 0.029). CONCLUSIONS: Patients with pretreatment SCC Ag ≤ 10 ng/mL have better PFS, LRRFS, and DMFS than those with pretreatment SCC Ag > 10 ng/mL. The rectal V30 is a significant predictor of severe acute diarrhea. Tomotherapy significantly decreased the rectal V30, reducing the severity of acute RT-related diarrhea during external beam RT. Trial registration This study was approved by the institutional review board at Kaohsiung Medical University Hospital. The registration number is KMUHIRB-E(I)-20190054 and retrospectively registered on 2019/3.


Subject(s)
Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Antigens, Neoplasm , Diarrhea/etiology , Female , Humans , Prognosis , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies , Serpins , Uterine Cervical Neoplasms/therapy
9.
Sci Rep ; 10(1): 4342, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32152428

ABSTRACT

Intensity-modulated radiotherapy with simultaneous integrated boost (IMRT-SIB) reduces overall treatment duration and results in less radiotherapy (RT)-induced dermatitis. However, the use of traditional sequential approach or IMRT-SIB is still under debate since there is not enough evidence of long-term clinical outcomes. The present study investigated 216 patients who underwent breast conserving surgery (BCS) between 2010 and 2013. The median age was 51 years (range, 21-81 years). All patients received IMRT-SIB, 50.4 Gy at 1.8 Gy per fraction to the whole breast and 60.2 Gy at 2.15 Gy per fraction to the tumor bed by integral boost. Among 216 patients, 175 patients received post-operative RT with forward IMRT and 41 patients had Tomotherapy. The median follow-up was 6.4 years. Forty patients (97.6%) in the Tomotherapy arm and 147 patients (84%) in the IMRT arm developed grade 0-1 skin toxicity (P = 0.021). For the entire cohort, the 5-year and 7-year overall survival (OS) rates were 94.4% and 93.1% respectively. The 7-year distant metastasis-free survival rates were 100% vs 89.1% in the Tomotherapy and IMRT arm respectively (P = 0.028). In conclusion, Tomotherapy improved acute skin toxicity compared with forward IMRT-SIB. Chronic skin complication was 1.9%. IMRT-SIB resulted in good long-term survival.


Subject(s)
Breast Neoplasms/mortality , Breast Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Adult , Aged , Aged, 80 and over , Breast Neoplasms/diagnosis , Combined Modality Therapy , Female , Humans , Kaplan-Meier Estimate , Mastectomy, Segmental , Middle Aged , Proportional Hazards Models , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Tomography , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...