Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Vet Sci ; 11: 1362379, 2024.
Article in English | MEDLINE | ID: mdl-38756510

ABSTRACT

Introduction: Angiotensin-converting enzyme 2 (ACE2) played an important role in the renin-angiotensin-aldosterone system (RAAS) and it was proved to be renoprotective in renal disease. Urinary angiotensin-converting enzyme 2 (uACE2) has been shown to reflect renal injury in human and experimental studies, but its role in feline kidney disease remains unknown. Aims: Our objectives involve comparing uACE2 concentrations and activities in cats across CKD stages with healthy controls, investigating the relationship between uACE2 concentrations, activities, and clinicopathological data in feline CKD patients, and assessing the predictive abilities of both for CKD progression. Methods: A retrospective, case-control study. The concentration and activity of uACE2 were measured by commercial ELISA and fluorometric assay kits, respectively. The concentration was adjusted to give uACE2 concentration-to-creatinine ratios (UACCRs). Results: In total, 67 cats consisting of 24 control and 43 chronic kidney disease (CKD), including 24 early-stage CKD and 19 late-stage CKD, were enrolled in this study. UACCR values were significantly higher in both early-stage (2.100 [1.142-4.242] x 10-6) and late-stage feline CKD (4.343 [2.992-5.0.71] x 10-6) compared to healthy controls (0.894 [0.610-1.076] x 10-6; p < 0.001), and there was also significant difference between-early stage group and late-stage group (p = 0.026). Urinary ACE2 activity (UAA) was significantly lower in CKD cats (1.338 [0.644-2.755] x pmol/min/ml) compared to the healthy cats (7.989 [3.711-15.903] x pmol/min/ml; p < 0.001). UACCR demonstrated an independent, positive correlation with BUN (p < 0.001), and UAA exhibited an independent, negative correlation with plasma creatinine (p < 0.001). Both UACCR and UAA did not yield significant results in predicting CKD progression based on the ROC curve analysis. Conclusion and clinical importance: uACE2 concentration and activity exhibit varying changes as renal function declines, particularly in advanced CKD cats.

2.
Discov Oncol ; 13(1): 87, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36098827

ABSTRACT

Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein overexpressed in human malignancies, including prostate cancer (PCa). In this study, we aimed to explore the oncogenic function of CIP2A in PCa cells and its underlying mechanism. We showed that 63.3% (38/60 cases) of PCa tissues exhibited a high CIP2A immunostaining, compared to 25% (3/12 cases) of BPH samples (p = 0.023). Furthermore, the protein level of CIP2A was positively correlated with patients' short survival time and nuclear AR levels in PCa tissues. Compared to PZ-HPV-7, an immortalized prostate cell line, androgen-sensitive LNCaP C-33, androgen-independent LNCaP C-81, or 22Rv1 cells exhibited a high CIP2A level, associated with high protein and phosphorylation levels of AR. While AR expression and activity modulated CIP2A expression, manipulating CIP2A expression in PCa cells regulated their AR protein levels and proliferation. The reduction of CIP2A expression also enhanced the sensitivity of PCa cells toward Enzalutamide treatment. Our data further showed that depletion of polo-kinase 1 (PLK1) expression or activity in C-81 or 22Rv1 cells caused reduced protein levels of c-Myc and AR. Notably, inhibition of PLK1 activity could abolish CIP2A-promoted expressions in c-Myc, AR, and prostate-specific antigen (PSA) in C-33 cells under an androgen-deprived condition, suggesting the role of PLK1 activity in CIP2A-promoted AR expression. In summary, our data showed the existence of a novel regulation between CIP2A and AR protein levels, which is critical for promoting PCa malignancy. Thus, CIP2A could serve as a therapeutic target for PCa.

3.
Stem Cell Res ; 49: 102109, 2020 12.
Article in English | MEDLINE | ID: mdl-33370876

ABSTRACT

Retinopathy is a well-known ocular complication that occurs in patients with type 2 diabetes (T2D). Recent evidence also indicates that diabetic patients have an increased prevalence of dry eye syndrome. However, the etiologies of both diabetic retinopathy (DR) and dry eye disease are complex, and their associations with T2D remains to be fully understood. Patient-derived human induced pluripotent stem cells (hiPSCs) enable the generation of disease-specific retinal tissues such as retinal pigment epithelium and lacrimal gland to model disease pathogenesis. Here, we describe the establishment of three hiPSC lines from T2D patients with PDR or dry eye disease.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Induced Pluripotent Stem Cells , Diabetes Mellitus, Type 2/complications , Humans , Retinal Pigment Epithelium
4.
Stem Cell Res ; 49: 102029, 2020 12.
Article in English | MEDLINE | ID: mdl-33096384

ABSTRACT

Type 1 diabetes (T1D) is characterized by the autoimmune destruction of insulin-producing ß cells. Genetic studies have identified > 60 T1D risk loci that harbor genes with disease-causative alleles. However, determining the biological effects of such loci is often difficult due to limited tissue availability. Disease-specific human induced pluripotent stem cells (hiPSCs) are a valuable resource for modeling T1D pathogenesis. In particular, families with complete disease penetrance offer an opportunity to further dissect T1D risk loci. Here, we describe the generation of three hiPSC lines from a T1D family with sequence variants associated with autoimmunity.


Subject(s)
Diabetes Mellitus, Type 1 , Induced Pluripotent Stem Cells , Insulin-Secreting Cells , Alleles , Autoimmunity/genetics , Diabetes Mellitus, Type 1/genetics , Humans
5.
Nucleic Acids Res ; 46(7): 3671-3691, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29385530

ABSTRACT

Transcriptionally non-co-linear (NCL) transcripts can originate from trans-splicing (trans-spliced RNA; 'tsRNA') or cis-backsplicing (circular RNA; 'circRNA'). While numerous circRNAs have been detected in various species, tsRNAs remain largely uninvestigated. Here, we utilize integrative transcriptome sequencing of poly(A)- and non-poly(A)-selected RNA-seq data from diverse human cell lines to distinguish between tsRNAs and circRNAs. We identified 24,498 NCL events and found that a considerable proportion (20-35%) of them arise from both tsRNAs and circRNAs, representing extensive alternative trans-splicing and cis-backsplicing in human cells. We show that sequence generalities of exon circularization are also observed in tsRNAs. Recapitulation of NCL RNAs further shows that inverted Alu repeats can simultaneously promote the formation of tsRNAs and circRNAs. However, tsRNAs and circRNAs exhibit quite different, or even opposite, expression patterns, in terms of correlation with the expression of their co-linear counterparts, expression breadth/abundance, transcript stability, and subcellular localization preference. These results indicate that tsRNAs and circRNAs may play different regulatory roles and analysis of NCL events should take the joint effects of different NCL-splicing types and joint effects of multiple NCL events into consideration. This study describes the first transcriptome-wide analysis of trans-splicing and cis-backsplicing, expanding our understanding of the complexity of the human transcriptome.


Subject(s)
Alternative Splicing/genetics , RNA/genetics , Trans-Splicing/genetics , Transcriptome/genetics , Exons/genetics , Gene Expression Profiling , Humans , RNA Splicing/genetics , RNA, Circular
6.
Sci Rep ; 7(1): 5289, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28706279

ABSTRACT

An important safety concern in the use of human pluripotent stem cells (hPSCs) is tumorigenic risk, because these cells can form teratomas after an in vivo injection at ectopic sites. Several thousands of undifferentiated hPSCs are sufficient to induce teratomas in a mouse model. Thus, it is critical to remove all residue-undifferentiated hPSCs that have teratoma potential before the clinical application of hPSC-derived cells. In this study, our data demonstrated the cytotoxic effects of cardiac glycosides, such as digoxin, lanatoside C, bufalin, and proscillaridin A, in human embryonic stem cells (hESCs). This phenomenon was not observed in human bone marrow mesenchymal stem cells (hBMMSCs). Most importantly, digoxin and lanatoside C did not affect the stem cells' differentiation ability. Consistently, the viability of the hESC-derived MSCs, neurons, and endothelium cells was not affected by the digoxin and lanatoside C treatment. Furthermore, the in vivo experiments demonstrated that digoxin and lanatoside C prevented teratoma formation. To the best of our knowledge, this study is the first to describe the cytotoxicity and tumor prevention effects of cardiac glycosides in hESCs. Digoxin and lanatoside C are also the first FDA-approved drugs that demonstrated cytotoxicity in undifferentiated hESCs.


Subject(s)
Adipogenesis/drug effects , Cardiac Glycosides/pharmacology , Cell Differentiation/drug effects , Human Embryonic Stem Cells/drug effects , Osteogenesis/drug effects , Teratoma/prevention & control , Animals , Cell Culture Techniques , Cells, Cultured , Human Embryonic Stem Cells/pathology , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Teratoma/metabolism , Teratoma/pathology
7.
Endocr Relat Cancer ; 23(8): 651-63, 2016 08.
Article in English | MEDLINE | ID: mdl-27492635

ABSTRACT

Androgen receptor (AR) is a steroid hormone receptor that functions as a transcription factor for regulating cell growth and survival. Aberrant AR function becomes a risk factor for promoting the progression of prostate cancer (PCa). In this study, we examined the roles of proline-rich tyrosine kinase 2 (PYK2) and ribosomal S6 kinase 1 (S6K1) in regulating AR expression and activity and growth properties in PCa cells. Compared with normal prostate tissues, PCa tumors exhibited high levels of PYK2 and S6K1 expression. Furthermore, the expression levels of PYK2 and S6K1 were significantly correlated with nuclear AR expression in PCa tissues. We further found the association between PYK2, S6K1, and AR in their protein expression and phosphorylation levels among normal prostate PZ-HPV-7 cells and prostate cancer LNCaP and 22Rv1 cells. Overexpression of the wild-type PYK2 in PZ-HPV-7 and LNCaP cells promoted AR and S6K1 expression and phosphorylation as well as enhanced cell growth. In contrast, expression of the mutated PYK2 or knockdown of PYK2 expression in LNCaP or 22Rv1 cells caused reduced expression or phosphorylation of AR and S6K1 as well as retarded cell growth. Under an androgen-deprived condition, PYK2-promoted AR expression and phosphorylation and PSA production in LNCaP cells can be abolished by knocking down S6K1 expression. In summary, our data suggested that PYK2 via S6K1 activation modulated AR function and growth properties in PCa cells. Thus, PYK2 and S6K1 may potentially serve as therapeutic targets for PCa treatment.


Subject(s)
Focal Adhesion Kinase 2/metabolism , Prostatic Neoplasms/metabolism , Receptors, Androgen/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Aged , Cell Line, Tumor , Cell Proliferation , Focal Adhesion Kinase 2/genetics , Humans , Male , Prostate/metabolism , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...