Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 4(1): 280, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33664385

ABSTRACT

Irinotecan inhibits cell proliferation and thus is used for the primary treatment of colorectal cancer. Metabolism of irinotecan involves incorporation of ß-glucuronic acid to facilitate excretion. During transit of the glucuronidated product through the gastrointestinal tract, an induced upregulation of gut microbial ß-glucuronidase (GUS) activity may cause severe diarrhea and thus force many patients to stop treatment. We herein report the development of uronic isofagomine (UIFG) derivatives that act as general, potent inhibitors of bacterial GUSs, especially those of Escherichia coli and Clostridium perfringens. The best inhibitor, C6-nonyl UIFG, is 23,300-fold more selective for E. coli GUS than for human GUS (Ki = 0.0045 and 105 µM, respectively). Structural evidence indicated that the loss of coordinated water molecules, with the consequent increase in entropy, contributes to the high affinity and selectivity for bacterial GUSs. The inhibitors also effectively reduced irinotecan-induced diarrhea in mice without damaging intestinal epithelial cells.


Subject(s)
Bacteria/drug effects , Colon/microbiology , Diarrhea/prevention & control , Enzyme Inhibitors/pharmacology , Gastrointestinal Microbiome/drug effects , Glucuronidase/antagonists & inhibitors , Imino Pyranoses/pharmacology , Irinotecan , Uronic Acids/pharmacology , Animals , Bacteria/enzymology , Cell Line , Diarrhea/chemically induced , Diarrhea/microbiology , Disease Models, Animal , Female , Glucuronidase/metabolism , Humans , Mice, Inbred BALB C
2.
Int J Mol Sci ; 19(2)2018 Jan 29.
Article in English | MEDLINE | ID: mdl-29382172

ABSTRACT

Galectins are ß-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell-cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure-activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.


Subject(s)
Galectins/chemistry , Quantitative Structure-Activity Relationship , Animals , Binding Sites , Galectins/antagonists & inhibitors , Humans , Molecular Docking Simulation , Protein Binding , Thiogalactosides/chemistry , Thiogalactosides/pharmacology
3.
Neurotox Res ; 24(4): 523-31, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23820985

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease with a hallmark motor defect caused by the death of dopaminergic neurons in the substantia nigra. Intranasal drug administration may be useful for Parkinson's treatment because this route avoids first-pass metabolism and increases bioavailability in the brain. In this study, we investigated the neuroprotection/neurorestoration effect of dopamine D3 receptor (D3R) agonists administered via both intranasal and subcutaneous routes in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD mouse model. Furthermore, we employed D3R knock-out mice to validate the dependence on D3R signaling. We found that in wild-type mice, but not D3 receptor knockout mice, both intranasal and subcutaneous administration of D3R agonists rescue dopamine (DA) depletion in the striatum as well as DA neuronal death in the substantia nigra after MPTP treatment. Moreover, subcutaneous 7-OH-DPAT administration significantly improved gait performance (stride length and overall running speed) of MPTP-lesioned mice after 7 and 14 days of recovery. In addition, the distribution of D3 agonist 7-OH-DPAT was measured in designated brain areas by mass spectrometry analysis after subcutaneous and intranasal administration. Our data suggest that intranasal administration of D3R agonist would be a practical approach to treat PD.


Subject(s)
Corpus Striatum/drug effects , Dopamine Agonists/therapeutic use , Dopamine/metabolism , MPTP Poisoning/drug therapy , Receptors, Dopamine D3/agonists , Substantia Nigra/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Administration, Intranasal , Animals , Corpus Striatum/metabolism , Disease Models, Animal , Dopamine Agonists/administration & dosage , Dopaminergic Neurons/metabolism , Gait/drug effects , Indoles/administration & dosage , Indoles/therapeutic use , Injections, Subcutaneous , MPTP Poisoning/chemically induced , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Substantia Nigra/metabolism , Tetrahydronaphthalenes/administration & dosage , Tetrahydronaphthalenes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...