Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 24(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30743989

ABSTRACT

Resveratrol (tran-3,5,4'-trihydroxystibene, RSV) is a kind of polyphenol which has anti-inflammatory, antioxidant, anti-allergy, and anti-cancer properties, as well as being a scavenger of free radicals and preventing cardiovascular diseases. However, it is quite unstable in light, heat, and other conditions, and decays easily due to environmental factors. For these reasons, this study used a new type of carrier, transfersome, to encapsulate RSV. Transfersome consists of phosphatidyl choline (PC) from a liposomal system and non-ionic edge activators (EA). EA are an important ingredient in the formulation of transfersome; they can enhance the flexibility of the lipid bimolecular membrane of transfersome. Due to its ultradeformability, it also allows drugs to penetrate the skin, even through the stratum corneum. We hope that this new encapsulation technique will improve the stability and enhance the permeability of RSV. Concluding all the tested parameters, the best production condition was 5% PC/EA (3:1) and 5% ethanol in distilled water, with an ultrasonic bath and stirring at 500 rpm, followed by high pressure homogenization. The optimal particle size was 40.13 ± 0.51 nm and the entrapment efficiency (EE) was 59.93 ± 0.99%. The results of antioxidant activity analysis showed that transfersomes were comparable to the RSV group (unencapsulated). During in vitro transdermal delivery analysis, after 6 h, D1-20(W) increased 27.59% by accumulation. Cell viability assay showed that the cytotoxicity of D3-80(W) was reduced by 34.45% compared with the same concentration of RSV. Therefore, we successfully prepared RSV transfersomes and also improved the stability, solubility, and safety of RSV.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Liposomes , Resveratrol/chemistry , Resveratrol/pharmacology , Administration, Cutaneous , Animals , Antioxidants/administration & dosage , Cell Survival/drug effects , Dose-Response Relationship, Drug , Melanoma, Experimental , Mice , Particle Size , Resveratrol/administration & dosage , Skin Absorption , Solubility
2.
Data Brief ; 17: 1288-1294, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29845100

ABSTRACT

This article presents a new sensitivity-improved electrochemical measurement architecture for cardiovascular disease (CVD) diagnosis by detecting CVD biomarkers, S100 beta protein and C-reactive protein (CRP). The new architecture includes a design for a new electrochemical measurement set-up, which improves the reaction conditions of chemical and biological molecules and incorporates a newly biochip design. With the new architecture, electrochemical measurement experiments were undertaken. The results obtained are related to the research article entitled "Improving sensitivity of a miniaturized label-free electrochemical biosensor using zigzag electrodes" [1].

3.
Biosens Bioelectron ; 103: 130-137, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29291592

ABSTRACT

Cardiovascular disease (CVD) is a leading cause of death among chronic diseases worldwide. Therefore, it is important to be able to detect CVD biomarkers early so that patients can be diagnosed properly and begin treatment as soon as possible. To detect biomarkers more conveniently, point-of-care (PoC) biosensors, which are easy to use and are of low cost, are becoming even more necessary. This paper focuses on developing a label-free electrochemical biosensor with high sensitivity for PoC applications to detect CVD biomarkers such as S100 beta proteins and C-reactive proteins (CRP). To meet the requirements of a PoC application and to improve the measurement sensitivity for detection purposes, a three-electrode configuration was miniaturized and fitted onto a biochip. Computer simulation of an electrolyte current density was used to investigate several potential effective possibilities. It was found that an electrolyte current density at an edge tip structure near the working electrode (WE) and counter electrode (CE) was higher than at other locations. A zigzag structure was then designed at the edge near the WE and CE positions. With this design, we can obtain a higher total electrolyte current. This newly-designed biochip was then used to measure the electrochemical feature. It was found that the measurement efficiency was also improved using this newly designed biochip.


Subject(s)
Biosensing Techniques/methods , C-Reactive Protein/isolation & purification , Cardiovascular Diseases/diagnosis , S100 Calcium Binding Protein beta Subunit/isolation & purification , Biomarkers/chemistry , C-Reactive Protein/chemistry , Electrochemical Techniques/methods , Humans , Point-of-Care Systems , S100 Calcium Binding Protein beta Subunit/chemistry
4.
Nanomaterials (Basel) ; 7(12)2017 Dec 07.
Article in English | MEDLINE | ID: mdl-29215572

ABSTRACT

Although octyl methoxy cinnamates (OMC) is the most used Ultraviolet B (UVB) filter in sunscreen, it has poor light stability in emulsion system. In this study, OMC/SiO2 nanoparticles were prepared via sol-gel emulsion method. Tetraethoxy silane (TEOS) was used as the silica source to encapsulate OMC. Modification of experimental parameters such as stirring speed of condensation reaction and emulsion condition, pH value of acid-catalyzed, surfactant and different percentage of TEOS and OMC, adding of OMC and surfactant to different phase may affect the particle size, and yield and entrapment efficiency in preparation process of OMC/SiO2 nanoparticles. Concluding all the parameter, we found that when condensation reaction and emulsion conditions are at 1000 rpm, pH 1.5, Span 80/Tween 20, TEOS/OMC ratios 1:1, OMC and surfactants added in oil phase, resulting in smaller particle sizes 476.5 nm, higher yield 95.8%, and higher entrapment efficiency 61.09%. Fourier transform infrared (FTIR) analysis demonstrated that OMC/SiO2 nanoparticles were successfully prepared. In vitro release profile supposed that OMC/SiO2 nanoparticles can delay OMC releasing and had 60.83% decreasing of cumulative amount. Therefore, the OMC/SiO2 nanoparticles have the potential to develop as new sunscreen materials in the use for cosmetics field in the future.

5.
Vet Microbiol ; 182: 150-5, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26711042

ABSTRACT

Porcine teschoviruses (PTVs) belong to the genus Teschovirus within the family Picornaviridae. PTVs are universal contaminants in pig herds in endemic and multi-infection statuses. Previous research has demonstrated PTV antigens and nucleic acid in renal glomeruli and tubular epithelia, suggesting the possibility that PTVs might be shed and transmitted via urine. The study aimed to demonstrate, in the context of pathogenesis, the presence of PTVs in the urine of naturally infected pigs. Viral loads of fluid and tissue samples quantified by an established qRT-PCR showed detection rates of 100% by head and in urine, feces, plasma and nasal swabs, and 38% in kidney. As predicted, PTVs were present in urine at 10(4.02 ± 1.45) copies/100 µl volume, equivalent to 17% of that in plasma. No significant differences were observed between healthy and culled pigs or among the 7 sampled herds. The presence of PTVs in urine was further substantiated by molecular serotyping. In particular, PTV-10 was identified in the urine of 3 piglets from 3 separate herds, consistent with the most prevalent serotype found in this study, and in plasma. The urine mixes with feces to form slurry making it easier for PTV to spread and contaminate the environment.


Subject(s)
Endemic Diseases/veterinary , Picornaviridae Infections/veterinary , Swine Diseases/virology , Teschovirus/physiology , Urine/virology , Animals , Picornaviridae Infections/genetics , Picornaviridae Infections/transmission , Picornaviridae Infections/virology , Serogroup , Sus scrofa/virology , Swine , Swine Diseases/genetics , Swine Diseases/transmission , Teschovirus/genetics , Teschovirus/isolation & purification , Viral Load , Virus Shedding
6.
J Phys Chem B ; 119(6): 2157-67, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25046564

ABSTRACT

In this study, we used the tryptophan analogue, (2,7-aza)Trp, which exhibits water catalyzed proton transfer isomerization among N(1)-H, N(7)-H, and N(2)-H isomers, to probe the water environment of tryptophan-59 (Trp59) near the connecting loop region of ribonuclease Tl (RNase T1) by replacing the tryptophan with (2,7-aza)Trp. The resulting (2,7-aza)Trp59 triple emission bands and their associated relaxation dynamics, together with relevant data of 7-azatryptophan and molecular dynamics (MD) simulation, lead us to propose two Trp59 containing conformers in RNase T1, namely, the loop-close and loop-open forms. Water is rich in the loop-open form around the proximity of (2,7-aza)Trp59, which catalyzes (2,7-aza)Trp59 proton transfer in the excited state, giving both N(1)-H and N(7)-H isomer emissions. The existence of N(2)-H isomer in the loop-open form, supported by the MD simulation, is mainly due to the specific hydrogen bonding between N(2)-H proton and water molecule that bridges N(2)-H and the amide oxygen of Pro60, forming a strong network. The loop-close form is relatively tight in space, which squeezes water molecules out of the interface of α-helix and ß2 strand, joined by the connecting loop region; accordingly, the water-scant environment leads to the sole existence of the N(1)-H isomer emission. MD simulation also points out that the Trp-water pairs appear to preferentially participate in a hydrogen bond network incorporating polar amino acid moieties on the protein surface and bulk waters, providing the structural dynamic features of the connecting loop region in RNase T1.


Subject(s)
Ribonuclease T1/chemistry , Water/chemistry , Amino Acid Substitution , Aspergillus oryzae/enzymology , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Structure, Secondary , Ribonuclease T1/genetics , Tryptophan
SELECTION OF CITATIONS
SEARCH DETAIL
...