Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(9): e2205481, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36658711

ABSTRACT

In this work, the authors demonstrate a novel vertically-stacked thin film transistor (TFT) architecture for heterogeneously complementary inverter applications, composed of p-channel polycrystalline silicon (poly-Si) and n-channel amorphous indium tungsten oxide (a-IWO), with a low footprint than planar structure. The a-IWO TFT with channel thickness of approximately 3-4 atomic layers exhibits high mobility of 24 cm2 V-1 s-1 , near ideally subthreshold swing of 63 mV dec-1 , low leakage current below 10-13 A, high on/off current ratio of larger than 109 , extremely small hysteresis of 0 mV, low contact resistance of 0.44 kΩ-µm, and high stability after encapsulating a passivation layer. The electrical characteristics of n-channel a-IWO TFT are well-matched with p-channel poly-Si TFT for superior complementary metal-oxide-semiconductor technology applications. The inverter can exhibit a high voltage gain of 152 V V-1 at low supply voltage of 1.5 V. The noise margin can be up to 80% of supply voltage and perform the symmetrical window. The pico-watt static power consumption inverter is achieved by the wide energy bandgap of a-IWO channel and atomically-thin channel. The vertically-stacked complementary field-effect transistors (CFET) with high energy-efficiency can increase the circuit density in a chip to conform the development of next-generation semiconductor technology.

2.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34835834

ABSTRACT

The integration of 4 nm thick amorphous indium tungsten oxide (a-IWO) and a hafnium oxide (HfO2) high-κ gate dielectric has been demonstrated previously as one of promising amorphous oxide semiconductor (AOS) thin-film transistors (TFTs). In this study, the more positive threshold voltage shift (∆VTH) and reduced ION were observed when increasing the oxygen ratio during a-IWO deposition. Through simple material measurements and Technology Computer Aided Design (TCAD) analysis, the distinct correlation between different chemical species and the corresponding bulk and interface density of states (DOS) parameters were systematically deduced, validating the proposed physical mechanisms with a quantum model for a-IWO nanosheet TFT. The effects of oxygen flow on oxygen interstitial (Oi) defects were numerically proved for modulating bulk dopant concentration Nd and interface density of Gaussian acceptor trap NGA at the front channel, significantly dominating the transfer characteristics of a-IWO TFT. Furthermore, based on the studies of density functional theory (DFT) for the correlation between formation energy Ef of Oi defect and Fermi level (EF) position, we propose a numerical methodology for monitoring the possible concentration distribution of Oi as a function of a bias condition for AOS TFTs.

3.
J Biophotonics ; 11(7): e201800017, 2018 07.
Article in English | MEDLINE | ID: mdl-29688625

ABSTRACT

This study presents 1 use of optical coherence tomography (OCT) angiography technique to examine neurovascular coupling effect. Repeated B-scans OCT recording is performed on the rat somatosensory cortex with cranial window preparation while its contralateral forepaw is electrically stimulated to activate the neurons in rest. We use an intensity-based Doppler variance (IBDV) algorithm mapped cerebral blood vessels in the cortex, and the temporal alteration in blood perfusion during neurovascular activation is analyzed using the proposed IBDV quantitative parameters. By using principal component analysis-based Fuzzy C Means clustering method, the stimulus-evoked vasomotion patterns were classified into 3 categories. We found that the response time of small vessels (resting diameter 14.9 ±6.6 µm), middle vessels (resting diameter 21.1 ±7.9 µm) and large vessels (resting diameter 50.7 ±6.5 µm) to achieve 5% change of vascular dilation after stimulation was 1.5, 2 and 5.5 seconds, respectively. Approximately 5% peak change of relative blood flow (RBF) in both small and middle vessels was observed. The large vessels react slowly and their responses nearly 4 seconds delayed, but no significant change in RBF of the large vessels was seen.


Subject(s)
Blood Vessels/diagnostic imaging , Blood Vessels/physiology , Somatosensory Cortex/blood supply , Tomography, Optical Coherence , Animals , Hemodynamics , Image Processing, Computer-Assisted , Male , Rats , Rats, Sprague-Dawley
4.
J Biophotonics ; 9(4): 343-50, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25755214

ABSTRACT

Non-invasive and quantitative estimations for the delineation of sub-surface tumor margins could greatly aid in the early detection and monitoring of the morphological appearances of tumor growth, ensure complete tumor excision without the unnecessary sacrifice of healthy tissue, and facilitate post-operative follow-up for recurrence. In this study, a high-speed, non-invasive, and ultra-high-resolution spectral domain optical coherence tomography (UHR-SDOCT) imaging platform was developed for the quantitative measurement of human sub-surface skin mass. With a proposed robust, semi-automatic analysis, the system can rapidly quantify lesion area and shape regularity by an en-face-oriented algorithm. Various sizes of nylon sutures embedded in pork skin were used first as a phantom to verify the accuracy of our algorithm, and then in vivo, feasibility was proven using benign human angiomas and pigmented nevi. Clinically, this is the first step towards an automated skin lesion measurement system. In vivo optical coherence tomography (OCT) image of angioma (A). Thin red arrows point to a blood vessel (BV).


Subject(s)
Skin Diseases/diagnostic imaging , Tomography, Optical Coherence/methods , Animals , Humans , Imaging, Three-Dimensional , Nevus, Pigmented/diagnostic imaging , Swine , Time Factors
5.
J Mater Chem B ; 3(17): 3447-3458, 2015 May 07.
Article in English | MEDLINE | ID: mdl-32262227

ABSTRACT

To evaluate the role of charge in the nanoparticle distribution we modified the external surface of layered double hydroxide nanoparticles with various organic groups bearing different charges and further a near-infrared (NIR) fluorescent dye (Cy5.5) is conjugated in the layered structure to assess the biodistribution. The functionalized nanocomposites performed as highly efficient contrast agents since Cy5.5 molecule stabilization inside the layered structure can safeguard them from metabolization in the physiological environments. The cell viability, lactate dehydrogenase and hemolytic assays showed no cytotoxicity with an exceptionally low release of both lactate dehydrogenase and hemoglobin from the treated cells. The in vivo biodistribution results disclosed a high accumulation of positive amino-layered double hydroxides (LDHs) in the lungs. In contrast, there is a rapid clearance of negatively charged carboxylate-LDHs from blood flow by liver uptake. Interestingly neutral LDH-PEG5000 showed enhanced blood circulation time, without high fluorescent accumulation in the major organs. In vitro cellular uptake studies from flow cytometry are relevant to the interactions between the nanoparticle surfaces and various cell types and the data are relevant to effects observed for in vivo biodistribution. To further demonstrate that surface functionalization on LDH nanoparticles can promote targeted drug release, we further immobilized hydroxo-substituted cisplatin (CP) on carboxylate-modified LDHs by coordination bonding. Due to the ideal cleaving property of the carboxylate group the coordinated CP can be efficiently released by the increase of acidic proton and Cl- concentration in the endosomal environment. Functionalized LDHs can be successfully employed as targeted drug delivery systems. When the LDH-CP complex accumulate primarily in the targeted organ, the high positive charge on the framework of LDHs cause susceptibility to rapid endocytosis, which facilitates sustained drug release with minimal systemic toxicity providing the apt treatment in the targeted organ.

6.
Opt Express ; 21(16): 19280-91, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23938845

ABSTRACT

The use and advantages of applying balanced-detection (BD) operation method to high speed spectral domain optical coherence tomography (SDOCT) are presented in this study, which we believe is the first such demonstration. Compared to conventional SDOCT, BD-SDOCT provides two unique advantages. First, the method can suppress background noise and autocorrelation artifacts in biological tissues. Second, it is a power-efficient method which is particularly helpful for high speed SDOCT to eliminate random intensity noise and to achieve shot noise limited detection. This performance allows in vivo three-dimensional tissue visualization with high imaging quality and high speed.

7.
Eur J Pharmacol ; 704(1-3): 41-8, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23420002

ABSTRACT

During prolonged depolarization, voltage-gated K(+) (Kv) channels display C-type inactivation, a process which is due to selectivity filter destabilization and serves to limit K(+) flux. Here we reported that coumarsabin, a coumarin derivative isolated from Juniperus Sabina, could hasten C-type inactivation and thus cause block of Kv channels in neuronal NG108-15 cells and Kv1.2 channels heterologously expressed in lung epithelial H1355 cells. In NG108-15 cells, extracellular, but not intracellular, coumarsabin (30 µM) strongly speeded up Kv current decay and caused a left-shift in the steady-state inactivation curve. Coumarsabin inhibited end-of-pulse Kv currents with an IC50 of 13.4 µM. The kinetics and voltage-dependence of activation were not affected by coumarsabin. The degree of block by coumarsabin was not enhanced by a reduction in intracellular K(+) concentration. Data reveal that coumarsabin was a closed channel blocker and it displayed a frequency-independent mode of inhibition. Coumarsabin did not accelerate current decay in a Kv1.2 mutant (V370G) defective in C-type inactivation. Taken together, our data suggest that Kv channel inhibition by coumarsabin did not appear to result from a direct obstruction of the outer pore but relied on C-type inactivation.


Subject(s)
Coumarins/pharmacology , Ion Channel Gating/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels, Voltage-Gated/physiology , Action Potentials/drug effects , Animals , Animals, Newborn , CA1 Region, Hippocampal/cytology , Cell Line, Tumor , Juniperus , Mice , Neurons/drug effects , Neurons/physiology , Plant Leaves , Rats , Rats, Sprague-Dawley
8.
Int J Urol ; 20(1): 40-55, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22571329

ABSTRACT

Botulinum toxin has been recently accepted as a novel treatment for lower urinary tract dysfunctions refractory to conventional treatment. Review of the clinical trials in recent years, botulinum toxin type A has been widely used in the urethra or urinary bladder to treat voiding dysfunction due to detrusor sphincter dyssynergia, incontinence due to neurogenic or idiopathic detrusor overactivity, sensory disorders such as bladder hypersensitivity, overactive bladder, and interstitial cystitis/painful bladder syndrome. Intravesical botulinum toxin type A injection is effective in treatment of urinary incontinence due to detrusor overactivity in men and women, as well as in children. Currently botulinum toxin type A has also been applied to treat lower urinary tract symptoms due to benign prostatic hyperplasia in patients not suitable for surgery. This article reviewed the recent advances of botulinum toxin type A on lower urinary tract dysfunction.


Subject(s)
Botulinum Toxins, Type A/therapeutic use , Lower Urinary Tract Symptoms/drug therapy , Prostatic Hyperplasia/drug therapy , Urinary Bladder Diseases/drug therapy , Urination Disorders/drug therapy , Animals , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...